Step 1: Multiply numerator and denominator by the conjugate of the denominator to simplify: \[ \frac{3 + 4i}{5 - 12i} \cdot \frac{5 + 12i}{5 + 12i} = \frac{(3 + 4i)(5 + 12i)}{(5 - 12i)(5 + 12i)} \] Step 2: Simplify the denominator: \[ (5 - 12i)(5 + 12i) = 5^2 + 12^2 = 25 + 144 = 169 \] Step 3: Simplify the numerator: \[ (3 + 4i)(5 + 12i) = 15 + 36i + 20i + 48i^2 = 15 + 56i - 48 = -33 + 56i \] Step 4: Now, the expression becomes: \[ \frac{-33 + 56i}{169} \] Step 5: This gives \( x = \frac{-33}{169} \) and \( y = \frac{56}{169} \).
Step 6: Therefore, \( x + y = \frac{-33}{169} + \frac{56}{169} = \frac{23}{169} \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: