Step 1: Multiply numerator and denominator by the conjugate of the denominator to simplify: \[ \frac{3 + 4i}{5 - 12i} \cdot \frac{5 + 12i}{5 + 12i} = \frac{(3 + 4i)(5 + 12i)}{(5 - 12i)(5 + 12i)} \] Step 2: Simplify the denominator: \[ (5 - 12i)(5 + 12i) = 5^2 + 12^2 = 25 + 144 = 169 \] Step 3: Simplify the numerator: \[ (3 + 4i)(5 + 12i) = 15 + 36i + 20i + 48i^2 = 15 + 56i - 48 = -33 + 56i \] Step 4: Now, the expression becomes: \[ \frac{-33 + 56i}{169} \] Step 5: This gives \( x = \frac{-33}{169} \) and \( y = \frac{56}{169} \).
Step 6: Therefore, \( x + y = \frac{-33}{169} + \frac{56}{169} = \frac{23}{169} \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.