The adjugate of \( A \), denoted \( \text{adj}(A) \), is given by the formula: \[ \text{adj}(A) = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \] Now, \( A^2 (\text{adj} A) = A \), as per the property of matrices where \( A^2 \times \text{adj}(A) = \det(A) \times A \).
Here, \( \det(A) = (3 \times 5) - (7 \times 2) = 15 - 14 = 1 \), so the result is \( A \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals