The adjugate of \( A \), denoted \( \text{adj}(A) \), is given by the formula: \[ \text{adj}(A) = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \] Now, \( A^2 (\text{adj} A) = A \), as per the property of matrices where \( A^2 \times \text{adj}(A) = \det(A) \times A \).
Here, \( \det(A) = (3 \times 5) - (7 \times 2) = 15 - 14 = 1 \), so the result is \( A \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.