An assignment of probabilities for outcomes of the sample space \( S = \{1, 2, 3, 4, 5, 6\} \) is as follows:
\[ \begin{array}{c|c c c c c c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline k & 3k & 5k & 7k & 9k & 11k \end{array} \]
If this assignment is valid, then the value of \( k \) is:
For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]
For a hyperbola, the vertices are at \( (6, 0) \) and \( (-6, 0) \). If the foci are at \( (2\sqrt{10}, 0) \) and \( -2\sqrt{10}, 0) \), then the equation of the hyperbola is:
If \( a = \tan^{-1}\left(\frac{4}{3}\right) \) and \( b = \tan^{-1}\left(\frac{1}{3}\right) \), where \( 0<a, b<\frac{\pi}{2} \), then \( a - b \) is:
If \(\sec \theta + \tan \theta = 2 + \sqrt{3}\), then \(\sec \theta - \tan \theta\) is:
The line \(y = 5x + 7\) is perpendicular to the line joining the points \((2, 12)\) and \((12, k)\). Then the value of \(k\) is equal to:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The value of \[ \left(\frac{10i}{(2-i)(3-i)}\right)^{2024} \] is equal to: