First, simplify the expression inside the parentheses:
\[
\frac{10i}{(2-i)(3-i)}
\]
Compute the product in the denominator:
\[
(2-i)(3-i) = 6 - 5i + i^2 = 6 - 5i - 1 = 5 - 5i
\]
Thus, the expression becomes:
\[
\frac{10i}{5 - 5i}
\]
Simplify this by multiplying the numerator and the denominator by the conjugate of the denominator:
\[
\frac{10i}{5 - 5i} \cdot \frac{5 + 5i}{5 + 5i} = \frac{50i + 50i^2}{25 + 25i - 25i - 25i^2} = \frac{50i - 50}{25 + 25} = \frac{-50 + 50i}{50}
\]
\[
= -1 + i
\]
Now, we raise \((-1+i)\) to the power of 2024:
\[
(-1+i)^{2024} = (i-1)^{2024}
\]
By Euler's formula, express \(i-1\) in polar form:
\[
i-1 = \sqrt{2} e^{i\left(\frac{3\pi}{4}\right)}
\]
Raise to the 2024th power:
\[
\left(\sqrt{2} e^{i\left(\frac{3\pi}{4}\right)}\right)^{2024} = 2^{1012} e^{i\left(\frac{3\pi}{4} \times 2024\right)}
\]
Calculate the angle modulo \(2\pi\):
\[
\frac{3\pi \times 2024}{4} \mod 2\pi = 0
\]
Hence, the expression simplifies to:
\[
2^{1012}
\]
Thus, the correct answer is option (B), \(2^{1012}\).