Question:

If a \overrightarrow{a} and b \overrightarrow{b} are two unit vectors and if π4 \frac{\pi}{4} is the angle between a \overrightarrow{a} and b \overrightarrow{b} , then (a+(ab)b)(a(ab)b) (\overrightarrow{a} + (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b}) \cdot (\overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b}) is:

Show Hint

When calculating the dot product of expressions involving unit vectors, use the fact that their magnitudes are 1 and apply the properties of dot products to simplify the calculations.
Updated On: Mar 11, 2025
  • 14 \frac{1}{4}
  • 34 \frac{3}{4}
  • 32 \frac{3}{2}
  • 12 \frac{1}{2}
  • 54 \frac{5}{4}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given two unit vectors a \overrightarrow{a} and b \overrightarrow{b} , and the angle between them is π4 \frac{\pi}{4}
The formula for the dot product of two vectors u \overrightarrow{u} and v \overrightarrow{v} is:
uv=uvcosθ. \overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| |\overrightarrow{v}| \cos \theta.  
Since a \overrightarrow{a} and b \overrightarrow{b} are unit vectors, their magnitudes are both 1, so: ab=cosπ4=12. \overrightarrow{a} \cdot \overrightarrow{b} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}. Now, we need to calculate the expression: (a+(ab)b)(a(ab)b). (\overrightarrow{a} + (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{b}) \cdot (\overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{b}). Substitute ab=12 \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{\sqrt{2}} into the expression: (a+12b)(a12b). (\overrightarrow{a} + \frac{1}{\sqrt{2}} \overrightarrow{b}) \cdot (\overrightarrow{a} - \frac{1}{\sqrt{2}} \overrightarrow{b}). Use the distributive property of the dot product: aa12ab+12ba12bb. \overrightarrow{a} \cdot \overrightarrow{a} - \frac{1}{\sqrt{2}} \overrightarrow{a} \cdot \overrightarrow{b} + \frac{1}{\sqrt{2}} \overrightarrow{b} \cdot \overrightarrow{a} - \frac{1}{2} \overrightarrow{b} \cdot \overrightarrow{b}. Since aa=1 \overrightarrow{a} \cdot \overrightarrow{a} = 1 and bb=1 \overrightarrow{b} \cdot \overrightarrow{b} = 1 , and ab=12 \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{\sqrt{2}} , the expression becomes: 11212+121212. 1 - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2}. Simplify: 112+1212=12. 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2}.  
Thus, the value of the expression is 12 \frac{1}{2} , and the correct answer is option (D).
 

Was this answer helpful?
0
0

Top Questions on solution of system of linear inequalities in two variables

View More Questions

Questions Asked in KEAM exam

View More Questions