First, simplify the integrand:
\[
e^x \sqrt{e^x} = e^x \cdot e^{x/2} = e^{3x/2}
\]
Now, integrate the simplified expression:
\[
\int e^{3x/2} \, dx
\]
Let \(u = \frac{3x}{2}\), then \(dx = \frac{2}{3} du\). Substitute and integrate:
\[
\int e^u \cdot \frac{2}{3} \, du = \frac{2}{3} \int e^u \, du = \frac{2}{3} e^u + C
\]
Substitute back for \(x\):
\[
= \frac{2}{3} e^{3x/2} + C
\]
Since \(e^{3x/2} = e^x \sqrt{e^x}\), we can rewrite the integral as:
\[
= \frac{2}{3} e^x \sqrt{e^x} + C
\]