Step 1: The recurrence relation is \( a_n = n \cdot a_{n-1} \).
So, calculate the terms step by step: \[ a_2 = 2 \cdot a_1 = 2 \cdot 3 = 6 \] \[ a_3 = 3 \cdot a_2 = 3 \cdot 6 = 18 \] \[ a_4 = 4 \cdot a_3 = 4 \cdot 18 = 72 \] \[ a_5 = 5 \cdot a_4 = 5 \cdot 72 = 360 \] \[ a_6 = 6 \cdot a_5 = 6 \cdot 360 = 2160 \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.