Step 1: The recurrence relation is \( a_n = n \cdot a_{n-1} \).
So, calculate the terms step by step: \[ a_2 = 2 \cdot a_1 = 2 \cdot 3 = 6 \] \[ a_3 = 3 \cdot a_2 = 3 \cdot 6 = 18 \] \[ a_4 = 4 \cdot a_3 = 4 \cdot 18 = 72 \] \[ a_5 = 5 \cdot a_4 = 5 \cdot 72 = 360 \] \[ a_6 = 6 \cdot a_5 = 6 \cdot 360 = 2160 \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals