We are asked to find the value of \( \sin^6{15^\circ} + \cos^6{15^\circ} \).
We can simplify this expression using algebraic identities.
First, recall the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2{15^\circ} \) and \( b = \cos^2{15^\circ} \).
Thus, the expression becomes: \[ \sin^6{15^\circ} + \cos^6{15^\circ} = (\sin^2{15^\circ} + \cos^2{15^\circ}) \left( (\sin^2{15^\circ})^2 - \sin^2{15^\circ} \cos^2{15^\circ} + (\cos^2{15^\circ})^2 \right) \] Since \( \sin^2{15^\circ} + \cos^2{15^\circ} = 1 \) (the Pythagorean identity), we are left with: \[ \sin^6{15^\circ} + \cos^6{15^\circ} = 1 \times \left( \sin^4{15^\circ} - \sin^2{15^\circ} \cos^2{15^\circ} + \cos^4{15^\circ} \right) \]
Next, simplify the expression inside the parentheses. Notice that \( \sin^4{15^\circ} + \cos^4{15^\circ} = (\sin^2{15^\circ} + \cos^2{15^\circ})^2 - 2\sin^2{15^\circ} \cos^2{15^\circ} \).
Since \( \sin^2{15^\circ} + \cos^2{15^\circ} = 1 \), this simplifies to: \[ \sin^4{15^\circ} + \cos^4{15^\circ} = 1 - 2\sin^2{15^\circ} \cos^2{15^\circ} \]
Thus, the original expression becomes: \[ \sin^6{15^\circ} + \cos^6{15^\circ} = 1 - 3\sin^2{15^\circ} \cos^2{15^\circ} \] Now, we need to compute \( \sin^2{15^\circ} \cos^2{15^\circ} \).
Using the double angle identity, we know that: \[ \sin{30^\circ} = 2 \sin{15^\circ} \cos{15^\circ} \] Since \( \sin{30^\circ} = \frac{1}{2} \), we have: \[ 2 \sin{15^\circ} \cos{15^\circ} = \frac{1}{2} \quad \Rightarrow \quad \sin{15^\circ} \cos{15^\circ} = \frac{1}{4} \]
Therefore: \[ \sin^2{15^\circ} \cos^2{15^\circ} = \left( \frac{1}{4} \right)^2 = \frac{1}{16} \] Substitute this into the equation for \( \sin^6{15^\circ} + \cos^6{15^\circ} \): \[ \sin^6{15^\circ} + \cos^6{15^\circ} = 1 - 3 \times \frac{1}{16} = 1 - \frac{3}{16} = \frac{16}{16} - \frac{3}{16} = \frac{13}{16} \]
Thus, the correct answer is option (A), \( \frac{13}{16} \).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: