We are asked to evaluate the following expression: \[ \frac{\cos^{-1}(0) + \sin^{-1}\left( \frac{\sqrt{3}}{2} \right) + \cos^{-1}\left( \frac{1}{2} \right)}{\sin^{-1}(1) + \cos^{-1}\left( \frac{\sqrt{3}}{2} \right) + \sin^{-1}\left( \frac{1}{\sqrt{2}} \right)} \] Step 1: Simplifying the Numerator
- \( \cos^{-1}(0) \): We know that \( \cos(\frac{\pi}{2}) = 0 \), so: \[ \cos^{-1}(0) = \frac{\pi}{2} \] - \( \sin^{-1}\left( \frac{\sqrt{3}}{2} \right) \): We know that \( \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \), so: \[ \sin^{-1}\left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{3} \] - \( \cos^{-1}\left( \frac{1}{2} \right) \): We know that \( \cos(\frac{\pi}{3}) = \frac{1}{2} \), so: \[ \cos^{-1}\left( \frac{1}{2} \right) = \frac{\pi}{3} \] Thus, the numerator becomes: \[ \frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{3} = \frac{3\pi}{6} + \frac{2\pi}{6} + \frac{2\pi}{6} = \frac{7\pi}{6} \] Step 2: Simplifying the Denominator
- \( \sin^{-1}(1) \): We know that \( \sin(\frac{\pi}{2}) = 1 \), so: \[ \sin^{-1}(1) = \frac{\pi}{2} \] - \( \cos^{-1}\left( \frac{\sqrt{3}}{2} \right) \): We know that \( \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \), so: \[ \cos^{-1}\left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{6} \] - \( \sin^{-1}\left( \frac{1}{\sqrt{2}} \right) \): We know that \( \sin\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \), so: \[ \sin^{-1}\left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4} \] Thus, the denominator becomes: \[ \frac{\pi}{2} + \frac{\pi}{6} + \frac{\pi}{4} \] Finding a common denominator for the terms: \[ \frac{6\pi}{12} + \frac{2\pi}{12} + \frac{3\pi}{12} = \frac{11\pi}{12} \] Step 3: Final Calculation
Now, we calculate the overall expression: \[ \frac{\frac{7\pi}{6}}{\frac{11\pi}{12}} = \frac{7\pi}{6} \times \frac{12}{11\pi} = \frac{7 \times 12}{6 \times 11} = \frac{84}{66} = \frac{14}{11} \] Thus, the correct answer is option (D), \( \frac{14}{11} \).
Thus, the correct answer is option (D), \( \frac{14}{11} \).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: