We are asked to evaluate:
\[
\sin \left( 2 \sin^{-1} \left( \frac{1}{2} \right) \right).
\]
Let \( \theta = \sin^{-1} \left( \frac{1}{2} \right) \), so that \( \sin \theta = \frac{1}{2} \).
Step 1: Recall the double angle identity for sine:
\[
\sin(2\theta) = 2 \sin \theta \cos \theta.
\]
Step 2: From \( \sin \theta = \frac{1}{2} \), we can find \( \cos \theta \) using the Pythagorean identity:
\[
\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left( \frac{1}{2} \right)^2 = 1 - \frac{1}{4} = \frac{3}{4}.
\]
Thus,
\[
\cos \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}.
\]
Step 3: Now, apply the double angle formula:
\[
\sin(2\theta) = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}.
\]
Thus, the value of \( \sin \left( 2 \sin^{-1} \left( \frac{1}{2} \right) \right) \) is \( \frac{\sqrt{3}}{2} \).
Therefore, the correct answer is option (B).