We are given the vectors:
\[
\overrightarrow{a} = 2i + 3j - 4k, \quad \overrightarrow{b} = i + j - k, \quad \overrightarrow{c} = -i + 2j + 3k, \quad \overrightarrow{d} = i + j + k.
\]
We are asked to find the value of:
\[
(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}).
\]
Step 1: Compute the cross product \( \overrightarrow{a} \times \overrightarrow{b} \):
\[
\overrightarrow{a} = 2i + 3j - 4k, \quad \overrightarrow{b} = i + j - k.
\]
The cross product is given by the determinant:
\[
\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & -4 \\
1 & 1 & -1
\end{vmatrix}.
\]
Expanding the determinant:
\[
= \hat{i} \begin{vmatrix} 3 & -4 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -4 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix}.
\]
\[
= \hat{i} \left( 3(-1) - (-4)(1) \right) - \hat{j} \left( 2(-1) - (-4)(1) \right) + \hat{k} \left( 2(1) - 3(1) \right)
\]
\[
= \hat{i} \left( -3 + 4 \right) - \hat{j} \left( -2 + 4 \right) + \hat{k} \left( 2 - 3 \right)
\]
\[
= \hat{i} (1) - \hat{j} (2) + \hat{k} (-1)
\]
\[
= \hat{i} - 2\hat{j} - \hat{k}.
\]
Thus,
\[
\overrightarrow{a} \times \overrightarrow{b} = \hat{i} - 2\hat{j} - \hat{k}.
\]
Step 2: Compute the cross product \( \overrightarrow{c} \times \overrightarrow{d} \):
\[
\overrightarrow{c} = -i + 2j + 3k, \quad \overrightarrow{d} = i + j + k.
\]
The cross product is given by the determinant:
\[
\overrightarrow{c} \times \overrightarrow{d} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 2 & 3 \\
1 & 1 & 1
\end{vmatrix}.
\]
Expanding the determinant:
\[
= \hat{i} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix}.
\]
\[
= \hat{i} \left( 2(1) - (3)(1) \right) - \hat{j} \left( (-1)(1) - (3)(1) \right) + \hat{k} \left( (-1)(1) - (2)(1) \right)
\]
\[
= \hat{i} \left( 2 - 3 \right) - \hat{j} \left( -1 - 3 \right) + \hat{k} \left( -1 - 2 \right)
\]
\[
= \hat{i} (-1) - \hat{j} (-4) + \hat{k} (-3)
\]
\[
= -\hat{i} + 4\hat{j} - 3\hat{k}.
\]
Thus,
\[
\overrightarrow{c} \times \overrightarrow{d} = -\hat{i} + 4\hat{j} - 3\hat{k}.
\]
Step 3: Now compute the dot product \( (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) \):
\[
(\hat{i} - 2\hat{j} - \hat{k}) \cdot (-\hat{i} + 4\hat{j} - 3\hat{k}).
\]
This gives:
\[
= (1)(-1) + (-2)(4) + (-1)(-3)
\]
\[
= -1 - 8 + 3 = -6.
\]
Thus, the value of \( (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) \) is \( -6 \).
Therefore, the correct answer is option (D).