Question:

If \( a = \tan^{-1}\left(\frac{4}{3}\right) \) and \( b = \tan^{-1}\left(\frac{1}{3}\right) \), where \( 0<a, b<\frac{\pi}{2} \), then \( a - b \) is:

Show Hint

When subtracting angles whose tangent values are known, use the tangent subtraction formula to find the tangent of the resulting angle, and then use the inverse tangent to find the angle itself.
Updated On: Mar 12, 2025
  • \(\tan^{-1}(3)\)
  • \(\tan^{-1}\left(\frac{3}{13}\right)\)
  • \(\tan^{-1}(5)\)
  • \(\tan^{-1}\left(\frac{9}{13}\right)\)
  • \(\tan^{-1}\left(\frac{5}{13}\right)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The tangent of a difference identity states: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b} \] Substitute \( a = \tan^{-1}\left(\frac{4}{3}\right) \) and \( b = \tan^{-1}\left(\frac{1}{3}\right) \): \[ \tan(a - b) = \frac{\frac{4}{3} - \frac{1}{3}}{1 + \left(\frac{4}{3} \cdot \frac{1}{3}\right)} \] Simplify: \[ = \frac{\frac{3}{3}}{1 + \frac{4}{9}} = \frac{1}{1 + \frac{4}{9}} = \frac{1}{\frac{13}{9}} = \frac{9}{13} \] Therefore, the angle difference \( a - b \) is: \[ a - b = \tan^{-1}\left(\frac{9}{13}\right) \]
Was this answer helpful?
0
0