Given: \( \frac{x + 3}{3} = \frac{y + 2}{1} = \frac{1 - z}{2} = \lambda \).
\( x = 3\lambda - 3, \quad y = \lambda - 2, \quad z = 1 - 2\lambda \).
\( 3\lambda - 3 + \lambda - 2 + 1 - 2\lambda = 2 \).
\( 2\lambda - 4 = 2 \implies \lambda = 3 \).
\( P(6, 1, -5) \).
Plane equation: \( 3x - 4y + 12z - 32 = 0 \).
\( q = \frac{|3(6) - 4(1) + 12(-5) - 32|}{\sqrt{3^2 + (-4)^2 + 12^2}} \).
\( q = \frac{|18 - 4 - 60 - 32|}{\sqrt{9 + 16 + 144}} = \frac{|-78|}{13} = 6 \).
Final Answer: The quadratic equation is:
\( x^2 - 18x + 72 = 0 \).
For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:
Let P₁ be the plane 3x-y-7z = 11 and P₂ be the plane passing through the points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the planes P₁ and P₂ is (α, β, γ), then a + ẞ+ y is equal to