When \(x = 0\), the determinant simplifies to:
\[ \begin{vmatrix} 1 & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d^2 \end{vmatrix} = 9 \cdot 8 \cdot 81 \]
The determinant is the product of the diagonal elements:
\[ 1 \cdot d \cdot d^2 = d^3 \]
Equating this to the right-hand side:
\[ d^3 = 9 \cdot 8 \cdot 81 \]
Simplify:
\[ d^3 = 729 \cdot 8 = 5832 \]
Take the cube root of both sides:
\[ d = \sqrt[3]{5832} \]
Factorize \(5832\):
\[ d = \sqrt[3]{729 \cdot 8} = \sqrt[3]{729} \cdot \sqrt[3]{8} = 9 \cdot 2 = 18 \]
Thus, \(d = 18\).
The eigenvalues of the determinant matrix are:
\[ \lambda^3 = 9 \cdot 8 \cdot 81 = 5832 \]
From the characteristic equation, the eigenvalues satisfy:
\[ 4x^2 - 24x + 27 = 0 \]
Solving for roots, we find:
\[ \lambda = \frac{9}{2} \, \text{and} \, \lambda = \frac{3}{2} \]
These results are consistent with the given problem.
The correct option is:
(A)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: