Given the equation:
\[ (2a) \ln a = (bc) \ln b, \quad 2a > 0, \quad bc > 0 \]
Rewriting the equation:
\[ \ln a (\ln 2 + \ln a) = \ln b (\ln b + \ln c) \]
Let:
The equations become:
From \( \alpha y = xz \), we get:
\[ \alpha = \frac{xz}{y} \]
Substituting into the second equation:
\[ x^2 (z + y) = y^2 (y + z) \]
Factorizing gives:
\[ (y + z)(x^2 - y^2) = 0 \]
This implies either:
If \( bc = 1 \), then:
\[ (2a) \ln a = 1 \]
Solving for \( a \):
\[ a = 1 \quad \text{or} \quad a = \frac{1}{2} \]
For \( a = 1 \), the solution is:
\[ (a, b, c) = \left( \frac{1}{2}, \lambda, \frac{1}{\lambda} \right), \quad \lambda = 1, 2, \frac{1}{2} \]
If \( ab = 1 \), then the solutions are:
\[ (a, b, c) = \left( \lambda, \frac{1}{\lambda}, \frac{1}{2} \right), \quad \lambda = 1, 2, \frac{1}{2} \]
For the given conditions, summing \( 6a + 5bc \):
\[ 6a + 5bc = 3 + 5 = 8 \]
\[ \boxed{8} \]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: