We split the integral into two parts based on the definition of \(F(x)\):
\[ \int_0^2 xF(x)dx = \int_0^1 xe^{x^2}dx + \int_1^2 xe^x dx \]
Let:
Use the substitution \(u = x^2 \Rightarrow du = 2x dx\). The limits change as:
The integral becomes:
\[ I_1 = \frac{1}{2} \int_0^1 e^u du \]
Evaluate the integral of \(e^u\):
\[ I_1 = \frac{1}{2} \left[e^u\right]_0^1 = \frac{1}{2} \left(e^1 - e^0\right) = \frac{1}{2}(e - 1) \]
Since \(e^x\) is constant with respect to \(x\), the integral becomes:
\[ I_2 = e \int_1^2 x dx \]
Evaluate the integral of \(x\):
\[ \int_1^2 x dx = \frac{x^2}{2} \bigg|_1^2 = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \]
Thus:
\[ I_2 = e \cdot \frac{3}{2} = \frac{3}{2}e \]
Add \(I_1\) and \(I_2\) to find the total integral:
\[ \int_0^2 xF(x)dx = I_1 + I_2 = \frac{1}{2}(e - 1) + \frac{3}{2}e \]
Combine terms:
\[ \int_0^2 xF(x)dx = \frac{1}{2}e - \frac{1}{2} + \frac{3}{2}e = \frac{4}{2}e - \frac{1}{2} = 2e - \frac{1}{2} \]
\[ \int_0^2 xF(x)dx = 2e - \frac{1}{2} \]