The parametric coordinates of a point \( P \) on the ellipse are given by:
\[ P(6\cos\theta, 3\sin\theta). \]
The equation of the normal at \( P \) is:
\[ (6\sec\theta)x - (3\csc\theta)y = 27. \]
Substitute \( C(2, 0) \) into the normal equation:
\[ (6\sec\theta)(2) - (3\csc\theta)(0) = 27. \]
Simplify:
\[ 12\sec\theta = 27 \quad \Rightarrow \quad \sec\theta = \frac{27}{12} = \frac{9}{4}. \]
Using \( \sec\theta = \frac{1}{\cos\theta} \):
\[ \cos\theta = \frac{4}{9}. \]
Find \( \sin\theta \) using \( \sin^2\theta = 1 - \cos^2\theta \):
\[ \sin\theta = \sqrt{1 - \left(\frac{4}{9}\right)^2} = \sqrt{\frac{81 - 16}{81}} = \sqrt{\frac{65}{81}} = \frac{\sqrt{65}}{9}. \]
The parametric coordinates of \( P \) are:
\[ P = \left(6\cos\theta, 3\sin\theta\right) = \left(6 \cdot \frac{4}{9}, 3 \cdot \frac{\sqrt{65}}{9}\right) = \left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right). \]
The distance \( \gamma \) between \( P\left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right) \) and \( C(2, 0) \) is:
\[ \gamma = \sqrt{\left(\frac{8}{3} - 2\right)^2 + \left(\frac{\sqrt{65}}{3} - 0\right)^2}. \]
Simplify the terms:
\[ \frac{8}{3} - 2 = \frac{8}{3} - \frac{6}{3} = \frac{2}{3}. \]
Thus:
\[ \gamma = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{\sqrt{65}}{3}\right)^2} = \sqrt{\frac{4}{9} + \frac{65}{9}} = \sqrt{\frac{69}{9}} = \frac{\sqrt{69}}{3}. \]
The value of \( 12\gamma^2 \) is:
\[ 12\gamma^2 = 12 \cdot \left(\frac{\sqrt{69}}{3}\right)^2 = 12 \cdot \frac{69}{9} = \frac{828}{9} = 92. \]
The value of \( 12\gamma^2 \) is \( 92 \).
Let each of the two ellipses $E_1:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;(a>b)$ and $E_2:\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}=1A$
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
