The parametric coordinates of a point \( P \) on the ellipse are given by:
\[ P(6\cos\theta, 3\sin\theta). \]
The equation of the normal at \( P \) is:
\[ (6\sec\theta)x - (3\csc\theta)y = 27. \]
Substitute \( C(2, 0) \) into the normal equation:
\[ (6\sec\theta)(2) - (3\csc\theta)(0) = 27. \]
Simplify:
\[ 12\sec\theta = 27 \quad \Rightarrow \quad \sec\theta = \frac{27}{12} = \frac{9}{4}. \]
Using \( \sec\theta = \frac{1}{\cos\theta} \):
\[ \cos\theta = \frac{4}{9}. \]
Find \( \sin\theta \) using \( \sin^2\theta = 1 - \cos^2\theta \):
\[ \sin\theta = \sqrt{1 - \left(\frac{4}{9}\right)^2} = \sqrt{\frac{81 - 16}{81}} = \sqrt{\frac{65}{81}} = \frac{\sqrt{65}}{9}. \]
The parametric coordinates of \( P \) are:
\[ P = \left(6\cos\theta, 3\sin\theta\right) = \left(6 \cdot \frac{4}{9}, 3 \cdot \frac{\sqrt{65}}{9}\right) = \left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right). \]
The distance \( \gamma \) between \( P\left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right) \) and \( C(2, 0) \) is:
\[ \gamma = \sqrt{\left(\frac{8}{3} - 2\right)^2 + \left(\frac{\sqrt{65}}{3} - 0\right)^2}. \]
Simplify the terms:
\[ \frac{8}{3} - 2 = \frac{8}{3} - \frac{6}{3} = \frac{2}{3}. \]
Thus:
\[ \gamma = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{\sqrt{65}}{3}\right)^2} = \sqrt{\frac{4}{9} + \frac{65}{9}} = \sqrt{\frac{69}{9}} = \frac{\sqrt{69}}{3}. \]
The value of \( 12\gamma^2 \) is:
\[ 12\gamma^2 = 12 \cdot \left(\frac{\sqrt{69}}{3}\right)^2 = 12 \cdot \frac{69}{9} = \frac{828}{9} = 92. \]
The value of \( 12\gamma^2 \) is \( 92 \).