Given: The statement is \(((\sim p) \land q) \implies r\). The converse of a conditional statement \((A \implies B)\) is defined as \((B \implies A)\).
Step 1: Identify A and B.
Here:
\(A = ((\sim p) \land q), B = r.\)
Thus, the converse is:
\(r \implies ((\sim p) \land q).\)
Step 2: Express the negation of the implication.
The negation of \(((\sim p) \land q) \implies r\) is:
\[\sim(((\sim p) \land q) \implies r) = (\sim r) \implies ((\sim p) \land q).\]
Step 3: Derive the logical equivalence.
The converse can also be written equivalently as:
\[r \implies ((\sim p) \land q) \implies (\sim((\sim p) \land q)) \implies (\sim r).\]
Simplifying further:
\[(p \lor (\sim q)) \implies (\sim r).\]
Final Answer: The converse is \((p \lor (\sim q)) \implies (\sim r).\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)