Given: Lines are given as:
The formula for the shortest distance between two skew lines is:
\( d = \frac{|(a_2 - a_1, b_2 - b_1, c_2 - c_1) \cdot (\mathbf{l}_1 \times \mathbf{l}_2)|}{\sqrt{\mathbf{l}_1^2} \cdot \sqrt{\mathbf{l}_2^2}} \),
where \( \mathbf{l}_1, \mathbf{l}_2 \) are the direction vectors of the lines.
\( \mathbf{l}_1 = \langle 1, -2, 2 \rangle, \quad \mathbf{l}_2 = \langle 1, 2, 0 \rangle \).
\( (a_2 - a_1, b_2 - b_1, c_2 - c_1) = \langle 4 + 2, 1 - 0, -3 - 5 \rangle = \langle 6, 1, -8 \rangle \).
\( \mathbf{l}_1 \times \mathbf{l}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 1 & 2 & 0 \end{vmatrix} \).
\( = \hat{i}((-4) - (4)) - \hat{j}((0) - (2)) + \hat{k}((2) - (-2)) \).
\( = -4\hat{i} - 2\hat{j} + 4\hat{k} \).
\( |\mathbf{l}_1 \times \mathbf{l}_2| = \sqrt{(-4)^2 + (-2)^2 + 4^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6 \).
\( d = \frac{|(6, 1, -8) \cdot (-4, -2, 4)|}{6} \).
\( (6)(-4) + (1)(-2) + (-8)(4) = -24 - 2 - 32 = -58 \).
\( d = \frac{|-58|}{6} = 9 \).
Final Answer: The shortest distance is \( d = 9 \).
For \(a, b \in \mathbb{Z}\) and \(|a - b| \leq 10\), let the angle between the plane \(P: ax + y - z = b\) and the line \(L: x - 1 = a - y = z + 1\) be \(\cos^{-1}\left(\frac{1}{3}\right)\). If the distance of the point \((6, -6, 4)\) from the plane \(P\) is \(3\sqrt{6}\), then \(a^4 + b^2\) is equal to:
Let P₁ be the plane 3x-y-7z = 11 and P₂ be the plane passing through the points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the planes P₁ and P₂ is (α, β, γ), then a + ẞ+ y is equal to