We are tasked with simplifying the expression using the given formula:
\[ \cos A \cos 2A \cos 2^2 A \dots \cos 2^{n-1} A = \frac{\sin(2^n A)}{2^n \sin A} \]
The expression becomes:
\[ 96 \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33} \]
Using the formula:
\[ 96 \cdot \frac{\sin(2^5 \cdot \frac{\pi}{33})}{2^5 \sin \frac{\pi}{33}} \]
Substitute \( 2^5 = 32 \):
\[ = 96 \cdot \frac{\sin \frac{32\pi}{33}}{32 \sin \frac{\pi}{33}} \]
Using the trigonometric identity \( \sin(\pi - x) = \sin x \), we know:
\[ \sin \frac{32\pi}{33} = \sin \frac{\pi}{33} \]
Substitute this back into the equation:
\[ = 96 \cdot \frac{\sin \frac{\pi}{33}}{32 \sin \frac{\pi}{33}} \]
The \( \sin \frac{\pi}{33} \) terms cancel out, leaving:
\[ = \frac{96}{32} = 3 \]
The simplified result is:
\[ \boxed{3} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.