We are tasked with simplifying the expression using the given formula:
\[ \cos A \cos 2A \cos 2^2 A \dots \cos 2^{n-1} A = \frac{\sin(2^n A)}{2^n \sin A} \]
The expression becomes:
\[ 96 \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33} \]
Using the formula:
\[ 96 \cdot \frac{\sin(2^5 \cdot \frac{\pi}{33})}{2^5 \sin \frac{\pi}{33}} \]
Substitute \( 2^5 = 32 \):
\[ = 96 \cdot \frac{\sin \frac{32\pi}{33}}{32 \sin \frac{\pi}{33}} \]
Using the trigonometric identity \( \sin(\pi - x) = \sin x \), we know:
\[ \sin \frac{32\pi}{33} = \sin \frac{\pi}{33} \]
Substitute this back into the equation:
\[ = 96 \cdot \frac{\sin \frac{\pi}{33}}{32 \sin \frac{\pi}{33}} \]
The \( \sin \frac{\pi}{33} \) terms cancel out, leaving:
\[ = \frac{96}{32} = 3 \]
The simplified result is:
\[ \boxed{3} \]
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: