We are tasked with simplifying the expression using the given formula:
\[ \cos A \cos 2A \cos 2^2 A \dots \cos 2^{n-1} A = \frac{\sin(2^n A)}{2^n \sin A} \]
The expression becomes:
\[ 96 \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33} \]
Using the formula:
\[ 96 \cdot \frac{\sin(2^5 \cdot \frac{\pi}{33})}{2^5 \sin \frac{\pi}{33}} \]
Substitute \( 2^5 = 32 \):
\[ = 96 \cdot \frac{\sin \frac{32\pi}{33}}{32 \sin \frac{\pi}{33}} \]
Using the trigonometric identity \( \sin(\pi - x) = \sin x \), we know:
\[ \sin \frac{32\pi}{33} = \sin \frac{\pi}{33} \]
Substitute this back into the equation:
\[ = 96 \cdot \frac{\sin \frac{\pi}{33}}{32 \sin \frac{\pi}{33}} \]
The \( \sin \frac{\pi}{33} \) terms cancel out, leaving:
\[ = \frac{96}{32} = 3 \]
The simplified result is:
\[ \boxed{3} \]
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}