We are tasked with simplifying the expression using the given formula:
\[ \cos A \cos 2A \cos 2^2 A \dots \cos 2^{n-1} A = \frac{\sin(2^n A)}{2^n \sin A} \]
The expression becomes:
\[ 96 \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33} \]
Using the formula:
\[ 96 \cdot \frac{\sin(2^5 \cdot \frac{\pi}{33})}{2^5 \sin \frac{\pi}{33}} \]
Substitute \( 2^5 = 32 \):
\[ = 96 \cdot \frac{\sin \frac{32\pi}{33}}{32 \sin \frac{\pi}{33}} \]
Using the trigonometric identity \( \sin(\pi - x) = \sin x \), we know:
\[ \sin \frac{32\pi}{33} = \sin \frac{\pi}{33} \]
Substitute this back into the equation:
\[ = 96 \cdot \frac{\sin \frac{\pi}{33}}{32 \sin \frac{\pi}{33}} \]
The \( \sin \frac{\pi}{33} \) terms cancel out, leaving:
\[ = \frac{96}{32} = 3 \]
The simplified result is:
\[ \boxed{3} \]
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
