Given the logical expression:
\[ (p \lor q) \land (q \lor (\sim r)) \]
The negation of the expression is:
\[ \sim [(p \lor q) \land (q \lor (\sim r))] \]
Using De Morgan’s laws:
\[ \sim [(p \lor q) \land (q \lor (\sim r))] = \sim (p \lor q) \lor \sim (q \lor (\sim r)) \]
Simplify \( \sim (p \lor q) \):
\[ \sim (p \lor q) = \sim p \land \sim q \]
Simplify \( \sim (q \lor (\sim r)) \):
\[ \sim (q \lor (\sim r)) = \sim q \land r \]
Combine the simplified terms using the distributive property:
\[ \sim (p \lor q) \lor \sim (q \lor (\sim r)) = (\sim p \land \sim q) \lor (\sim q \land r) \]
Rewrite using distributive properties:
\[ (\sim p \lor r) \land (\sim q) \]
The simplified negation of the given expression is:
\[ (\sim p \lor r) \land (\sim q) \]
If probability of happening of an event is 57%, then probability of non-happening of the event is
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
