Question:

The negation of the statement
(p v q) ∧ (q v(∼r)) is

Updated On: Jan 12, 2025
  • (p v r) ∧ (∼q)
  • ((∼p v r)) ∧ (∼q)
  • ((∼p ) v (∼q) v(∼r)
  • ((∼p ) v (∼q) ∧(∼r)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given the logical expression:

\[ (p \lor q) \land (q \lor (\sim r)) \]

Step 1: Taking the Negation

The negation of the expression is:

\[ \sim [(p \lor q) \land (q \lor (\sim r))] \]

Using De Morgan’s laws:

\[ \sim [(p \lor q) \land (q \lor (\sim r))] = \sim (p \lor q) \lor \sim (q \lor (\sim r)) \]

Step 2: Simplify Each Term

Simplify \( \sim (p \lor q) \):

\[ \sim (p \lor q) = \sim p \land \sim q \]

Simplify \( \sim (q \lor (\sim r)) \):

\[ \sim (q \lor (\sim r)) = \sim q \land r \]

Step 3: Combine Terms

Combine the simplified terms using the distributive property:

\[ \sim (p \lor q) \lor \sim (q \lor (\sim r)) = (\sim p \land \sim q) \lor (\sim q \land r) \]

Rewrite using distributive properties:

\[ (\sim p \lor r) \land (\sim q) \]

Final Answer:

The simplified negation of the given expression is:

\[ (\sim p \lor r) \land (\sim q) \]

Was this answer helpful?
0
0

Top Questions on Probability

View More Questions