In \( \triangle ABP \), we know:
\[ \tan 45^\circ = \frac{AB}{AP}. \]
Since \( \tan 45^\circ = 1 \):
\[ 1 = \frac{5}{AP}. \]
Rearranging, we get:
\[ AP = 5 \, \text{m}. \]
In \( \triangle ABQ \), \( \angle BAQ = 30^\circ \). Using the tangent formula:
\[ \tan 30^\circ = \frac{AB}{AQ}. \]
Substitute \( \tan 30^\circ = \frac{1}{\sqrt{3}} \):
\[ \frac{1}{\sqrt{3}} = \frac{5}{AQ}. \]
Rearranging, we find:
\[ AQ = 5\sqrt{3} \, \text{m}. \]
Using the Pythagoras theorem in \( \triangle APQ \):
\[ PQ^2 = AP^2 + AQ^2. \]
Substitute \( AP = 5 \, \text{m} \) and \( AQ = 5\sqrt{3} \, \text{m} \):
\[ PQ^2 = 5^2 + (5\sqrt{3})^2. \]
Simplify:
\[ PQ^2 = 25 + 75 = 100. \]
Therefore:
\[ PQ = \sqrt{100} = 10 \, \text{m}. \]
The length of \( PQ \) is \( 10 \, \text{m} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: