In \( \triangle ABP \), we know:
\[ \tan 45^\circ = \frac{AB}{AP}. \]
Since \( \tan 45^\circ = 1 \):
\[ 1 = \frac{5}{AP}. \]
Rearranging, we get:
\[ AP = 5 \, \text{m}. \]
In \( \triangle ABQ \), \( \angle BAQ = 30^\circ \). Using the tangent formula:
\[ \tan 30^\circ = \frac{AB}{AQ}. \]
Substitute \( \tan 30^\circ = \frac{1}{\sqrt{3}} \):
\[ \frac{1}{\sqrt{3}} = \frac{5}{AQ}. \]
Rearranging, we find:
\[ AQ = 5\sqrt{3} \, \text{m}. \]
Using the Pythagoras theorem in \( \triangle APQ \):
\[ PQ^2 = AP^2 + AQ^2. \]
Substitute \( AP = 5 \, \text{m} \) and \( AQ = 5\sqrt{3} \, \text{m} \):
\[ PQ^2 = 5^2 + (5\sqrt{3})^2. \]
Simplify:
\[ PQ^2 = 25 + 75 = 100. \]
Therefore:
\[ PQ = \sqrt{100} = 10 \, \text{m}. \]
The length of \( PQ \) is \( 10 \, \text{m} \).
The given graph illustrates: