To maximize the given expression, we use the Arithmetic Mean (A.M.) and Geometric Mean (G.M.) inequality:
A.M. ≥ G.M.
Let us assume the terms as:
\[ \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{a}{5}, \frac{b}{3}, \frac{b}{3}, \frac{b}{3}, \frac{c}{2}, \frac{c}{2}, d \]
Now applying A.M. ≥ G.M., we get:
\[ \frac{\frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + \frac{c}{2} + \frac{c}{2} + d}{11} \geq \sqrt[11]{a^5b^3c^2d} \]
Given \(a + b + c + d = 11\), the left-hand side simplifies to:
\[ \frac{11}{11} \geq \sqrt[11]{a^5b^3c^2d} \]
Therefore:
\[ a^5b^3c^2d \leq 5^5 \cdot 3^3 \cdot 2^2 \cdot 1 \]
Calculating the maximum value:
\[ a^5b^3c^2d \leq 5^5 \cdot 3^3 \cdot 2^2 = 337500 \]
We can express this as:
\[ 337500 = 90 \cdot 3750 \quad \text{where} \, \beta = 90 \]
To achieve the maximum value, the numbers must be distributed in the ratios consistent with their powers in \(a^5b^3c^2d\), ensuring the product is maximized. Using A.M. ≥ G.M. is crucial in such optimization problems.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: