>
JEE Main
>
Mathematics
List of top Mathematics Questions asked in JEE Main
Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where I is the identity matrix of order $3 \times 3$, then $2a + 3b$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Matrices and Determinants
Let \(A\) be the region enclosed by the parabola \(y^2 = 2x\) and the line \(x = 24\). Then the maximum area of the rectangle inscribed in the region \(A\) is ________.
JEE Main - 2024
JEE Main
Mathematics
Application of derivatives
Let \[ \int_{\log_e a}^{4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}. \] Then \(e^\alpha\) and \(e^{-\alpha}\) are the roots of the equation:
JEE Main - 2024
JEE Main
Mathematics
limits and derivatives
The sum of all the solutions of the equation \[(8)^{2x} - 16 \cdot (8)^x + 48 = 0\]is:
JEE Main - 2024
JEE Main
Mathematics
Exponential and Logarithmic Functions
There are three bags \(X\), \(Y\), and \(Z\). Bag \(X\) contains 5 one-rupee coins and 4 five-rupee coins; Bag \(Y\) contains 4 one-rupee coins and 5 five-rupee coins, and Bag \(Z\) contains 3 one-rupee coins and 6 five-rupee coins. A bag is selected at random and a coin drawn from it at random is found to be a one-rupee coin. Then the probability, that it came from bag \(Y\), is:
JEE Main - 2024
JEE Main
Mathematics
Probability
If the shortest distance between the lines.
L1: $\vec{r} = (2 + \lambda)\hat{i} + (1 - 3\lambda)\hat{j} + (3 + 4\lambda)\hat{k}$, $\lambda \in \mathbb{R}$.
L2: $\vec{r} = 2(1 + \mu)\hat{i} + 3(1 + \mu)\hat{j} + (5 + \mu)\hat{k}$, $\mu \in \mathbb{R}$ is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m + n equals.
JEE Main - 2024
JEE Main
Mathematics
Distance between Two Lines
The number of distinct real roots of the equation \[ |x + 1| |x + 3| - 4|x + 2| + 5 = 0, \] is _______.
JEE Main - 2024
JEE Main
Mathematics
Algebra
Let \(P(\alpha, \beta, \gamma)\) be the image of the point \(Q(1, 6, 4)\) in the line \[ \frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3}. \] Then \(2\alpha + \beta + \gamma\) is equal to _______.
JEE Main - 2024
JEE Main
Mathematics
3D Geometry
Let \(f(x) = \begin{cases} -a & \text{if } -a \leq x \leq 0, \\ x + a & \text{if } 0<x \leq a \end{cases} \) where \(a>0\) and \(g(x) = (f(|x|) - |f(x)|)/2\). Then the function \(g : [-a, a] \to [-a, a]\) is:
JEE Main - 2024
JEE Main
Mathematics
Functions
Let \(S\) be the focus of the hyperbola \(\frac{x^2}{3} - \frac{y^2}{5} = 1\), on the positive x-axis. Let \(C\) be the circle with its centre at \(A\left(\sqrt{6}, \sqrt{5}\right)\) and passing through the point \(S\). If \(O\) is the origin and \(SAB\) is a diameter of \(C\), then the square of the area of the triangle \(OSB\) is equal to -
JEE Main - 2024
JEE Main
Mathematics
Conic sections
Let the circles $C_1 : (x - \alpha)^2 + (y - \beta)^2 = r_1^2$ and $C_2 : (x - 8)^2 + \left( y - \frac{15}{2} \right)^2 = r_2^2$ touch each other externally at the point $(6, 6)$. If the point $(6, 6)$ divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio $2 : 1$, then $(\alpha + \beta) + 4\left(r_1^2 + r_2^2\right)$ equals _____.
JEE Main - 2024
JEE Main
Mathematics
Coordinate Geometry
Let \(a, b, c \in \mathbb{N}\) and \(a<b<c\). Let the mean, the mean deviation about the mean and the variance of the 5 observations \(9, 25, a, b, c\) be \(18, 4\) and \(\frac{136}{5}\), respectively. Then \(2a + b - c\) is equal to _______.
JEE Main - 2024
JEE Main
Mathematics
Mean Deviation
The number of critical points of the function $f(x) = (x - 2)^{2/3}(2x + 1)$ is:
JEE Main - 2024
JEE Main
Mathematics
Maxima and Minima
The equations of two sides AB and AC of a triangle ABC are $4x + y = 14$ and $3x - 2y = 5$, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2 : 1. The equation of the side BC is:
JEE Main - 2024
JEE Main
Mathematics
Coordinate Geometry
Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest positive product, is $\frac{m}{n}$, where $\gcd(m, n) = 1$, then $n - m$ equals :
JEE Main - 2024
JEE Main
Mathematics
Probability
Let \(\alpha |x| = |y| e^{xy - \beta}\), \(\alpha, \beta \in \mathbb{N}\) be the solution of the differential equation \[ xdy - ydx + xy(xdy + ydx) = 0, \quad y(1) = 2. \] Then \(\alpha + \beta\) is equal to _.
JEE Main - 2024
JEE Main
Mathematics
Differential equations
The value of $k \in \mathbb{N}$ for which the integral \[ I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \] satisfies $147 \, I_{20} = 148 \, I_{21}$ is:
JEE Main - 2024
JEE Main
Mathematics
Some Properties of Definite Integrals
Let $\vec{a} = 6\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If $\vec{c}$ is a vector such that \[ |\vec{c}| \geq 6, \quad \vec{a} \cdot \vec{c} = 6 |\vec{c}|, \quad |\vec{c} - \vec{a}| = 2\sqrt{2} \] and the angle between $\vec{a} \times \vec{b}$ and $\vec{c}$ is $60^\circ$, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Vector Algebra
If $z_1, z_2$ are two distinct complex numbers such that \[ \frac{|z_1 - 2z_2|}{\left| \frac{1}{2} - z_1 \overline{z_2} \right|} = 2, \] then
JEE Main - 2024
JEE Main
Mathematics
Complex numbers
The length of the latus rectum and directrices of a hyperbola with eccentricity $e$ are 9 and $x = \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y - \sqrt{3}x + \sqrt{3} = 0$ touch this hyperbola at $(x_0, y_0)$. If $m$ is the product of the focal distances of the point $(x_0, y_0)$, then $4e^2 + m$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
Hyperbola
Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \left((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}\right) \times \hat{i}$. Then the square of the projection of $\vec{a}$ on $\vec{b}$ is:
JEE Main - 2024
JEE Main
Mathematics
Vector Algebra
From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable $X$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If the variance of $X$ is $\frac{m}{n}$, where $\gcd(m, n) = 1$, then $n - m$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
Variance and Standard Deviation
Let $[t]$ denote the largest integer less than or equal to $t$. If \[ \int_0^1 \left(\left[x^2\right] + \left\lfloor \frac{x^2}{2} \right\rfloor\right) dx = a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7}, \] where $a, b, c \in \mathbb{Z}$, then $a + b + c$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
integral
If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315
th
position in this arrangement is
JEE Main - 2024
JEE Main
Mathematics
permutations and combinations
If \[ S(x) = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + \ldots + 60(1 + x)^{60}, \, x \neq 0, \] and \[ (60)^2 S(60) = a(b)^b + b, \] where $a, b \in \mathbb{N}$, then $(a + b)$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
Sets
Prev
1
...
43
44
45
46
47
...
136
Next