To find the shortest distance between the given lines \( L_1 \) and \( L_2 \), we will use the formula for the shortest distance between two skew lines in vector form. The given lines are:
First, extract the direction vectors and a point from each line:
Let \(\vec{b_1} = 2\hat{i} + \hat{j} + 3\hat{k} \) be a point on \( L_1 \) when \(\lambda = 0\) and \(\vec{b_2} = 2\hat{i} + 3\hat{j} + 5\hat{k} \) be a point on \( L_2 \) when \(\mu = 0\).
The vector connecting these points is: \(\vec{b_2} - \vec{b_1} = 0\hat{i} + 2\hat{j} + 2\hat{k} \).
Now, the formula for the shortest distance \(d\) between two skew lines is given by:
\(d = \frac{|\vec{b_2} - \vec{b_1} \cdot (\vec{a_1} \times \vec{a_2})|}{|\vec{a_1} \times \vec{a_2}|}\)
First, calculate the cross product \(\vec{a_1} \times \vec{a_2}\):
\[ \vec{a_1} \times \vec{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 2 & 3 & 1 \end{vmatrix} \]
Calculating the determinant, we find:
\(= \hat{i}((-3) \cdot 1 - 4 \cdot 3) - \hat{j}(1 \cdot 1 - 4 \cdot 2) + \hat{k}(1 \cdot 3 + 3 \cdot 2)\)
\(= \hat{i}(-3 - 12) - \hat{j}(1 - 8) + \hat{k}(3 + 6)\)
\(= -15\hat{i} + 7\hat{j} + 9\hat{k}\)
Now, calculate the dot product \(\vec{b_2} - \vec{b_1}\) with the cross product:
\((\vec{b_2} - \vec{b_1}) \cdot (\vec{a_1} \times \vec{a_2}) = (0\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (-15\hat{i} + 7\hat{j} + 9\hat{k})\)
\(= 0 \cdot (-15) + 2 \cdot 7 + 2 \cdot 9\)
\(= 0 + 14 + 18 = 32\)
Now, find the magnitude of the cross product:
\(|\vec{a_1} \times \vec{a_2}| = \sqrt{(-15)^2 + 7^2 + 9^2}\)
\(= \sqrt{225 + 49 + 81} = \sqrt{355}\)
Finally, the shortest distance is:
\(d = \frac{|32|}{\sqrt{355}}\)
\(= \frac{32}{\sqrt{355}}\)
Given that the shortest distance is \(\frac{m}{\sqrt{n}}\), we identify \(m = 32\) and \(n = 355\). The greatest common divisor of 32 and 355 is 1, thus the ratio is already in its simplest form.
Therefore, the value of \(m + n = 32 + 355 = 387\).
The shortest distance between skew lines is given by:
\[ \text{Shortest Distance} = \frac{| \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) |}{|\mathbf{p} \times \mathbf{q}|}. \]
Step 1: Input values:
\[ \mathbf{p} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{AB} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}. \]
Step 2: Compute \(\mathbf{p} \times \mathbf{q}\):
\[ \mathbf{p} \times \mathbf{q} = \begin{bmatrix} -4 \\ -3 \\ 4 \end{bmatrix}. \]
Magnitude of \(\mathbf{p} \times \mathbf{q}\):
\[ |\mathbf{p} \times \mathbf{q}| = \sqrt{(-4)^2 + (-3)^2 + 4^2} = \sqrt{55}. \]
Step 3: Calculate \(|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})|\):
\[ \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) = (0)(-4) + (2)(-3) + (2)(4) = -6 + 8 = 2. \] \[ |\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})| = 32. \]
Step 4: Shortest Distance:
\[ \text{Shortest Distance} = \frac{32}{\sqrt{355}}. \]
Step 5: Simplify:
\[ m = 32, \quad n = 355, \quad \gcd(m, n) = 1. \]
Sum:
\[ m + n = 32 + 355 = 387. \]
Final Answer:
\[ \boxed{387.} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
