The shortest distance between skew lines is given by:
\[ \text{Shortest Distance} = \frac{| \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) |}{|\mathbf{p} \times \mathbf{q}|}. \]
Step 1: Input values:
\[ \mathbf{p} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{AB} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}. \]
Step 2: Compute \(\mathbf{p} \times \mathbf{q}\):
\[ \mathbf{p} \times \mathbf{q} = \begin{bmatrix} -4 \\ -3 \\ 4 \end{bmatrix}. \]
Magnitude of \(\mathbf{p} \times \mathbf{q}\):
\[ |\mathbf{p} \times \mathbf{q}| = \sqrt{(-4)^2 + (-3)^2 + 4^2} = \sqrt{55}. \]
Step 3: Calculate \(|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})|\):
\[ \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) = (0)(-4) + (2)(-3) + (2)(4) = -6 + 8 = 2. \] \[ |\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})| = 32. \]
Step 4: Shortest Distance:
\[ \text{Shortest Distance} = \frac{32}{\sqrt{355}}. \]
Step 5: Simplify:
\[ m = 32, \quad n = 355, \quad \gcd(m, n) = 1. \]
Sum:
\[ m + n = 32 + 355 = 387. \]
Final Answer:
\[ \boxed{387.} \]