To find the shortest distance between the given lines \( L_1 \) and \( L_2 \), we will use the formula for the shortest distance between two skew lines in vector form. The given lines are:
First, extract the direction vectors and a point from each line:
Let \(\vec{b_1} = 2\hat{i} + \hat{j} + 3\hat{k} \) be a point on \( L_1 \) when \(\lambda = 0\) and \(\vec{b_2} = 2\hat{i} + 3\hat{j} + 5\hat{k} \) be a point on \( L_2 \) when \(\mu = 0\).
The vector connecting these points is: \(\vec{b_2} - \vec{b_1} = 0\hat{i} + 2\hat{j} + 2\hat{k} \).
Now, the formula for the shortest distance \(d\) between two skew lines is given by:
\(d = \frac{|\vec{b_2} - \vec{b_1} \cdot (\vec{a_1} \times \vec{a_2})|}{|\vec{a_1} \times \vec{a_2}|}\)
First, calculate the cross product \(\vec{a_1} \times \vec{a_2}\):
\[ \vec{a_1} \times \vec{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 2 & 3 & 1 \end{vmatrix} \]
Calculating the determinant, we find:
\(= \hat{i}((-3) \cdot 1 - 4 \cdot 3) - \hat{j}(1 \cdot 1 - 4 \cdot 2) + \hat{k}(1 \cdot 3 + 3 \cdot 2)\)
\(= \hat{i}(-3 - 12) - \hat{j}(1 - 8) + \hat{k}(3 + 6)\)
\(= -15\hat{i} + 7\hat{j} + 9\hat{k}\)
Now, calculate the dot product \(\vec{b_2} - \vec{b_1}\) with the cross product:
\((\vec{b_2} - \vec{b_1}) \cdot (\vec{a_1} \times \vec{a_2}) = (0\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (-15\hat{i} + 7\hat{j} + 9\hat{k})\)
\(= 0 \cdot (-15) + 2 \cdot 7 + 2 \cdot 9\)
\(= 0 + 14 + 18 = 32\)
Now, find the magnitude of the cross product:
\(|\vec{a_1} \times \vec{a_2}| = \sqrt{(-15)^2 + 7^2 + 9^2}\)
\(= \sqrt{225 + 49 + 81} = \sqrt{355}\)
Finally, the shortest distance is:
\(d = \frac{|32|}{\sqrt{355}}\)
\(= \frac{32}{\sqrt{355}}\)
Given that the shortest distance is \(\frac{m}{\sqrt{n}}\), we identify \(m = 32\) and \(n = 355\). The greatest common divisor of 32 and 355 is 1, thus the ratio is already in its simplest form.
Therefore, the value of \(m + n = 32 + 355 = 387\).
The shortest distance between skew lines is given by:
\[ \text{Shortest Distance} = \frac{| \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) |}{|\mathbf{p} \times \mathbf{q}|}. \]
Step 1: Input values:
\[ \mathbf{p} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{AB} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}. \]
Step 2: Compute \(\mathbf{p} \times \mathbf{q}\):
\[ \mathbf{p} \times \mathbf{q} = \begin{bmatrix} -4 \\ -3 \\ 4 \end{bmatrix}. \]
Magnitude of \(\mathbf{p} \times \mathbf{q}\):
\[ |\mathbf{p} \times \mathbf{q}| = \sqrt{(-4)^2 + (-3)^2 + 4^2} = \sqrt{55}. \]
Step 3: Calculate \(|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})|\):
\[ \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) = (0)(-4) + (2)(-3) + (2)(4) = -6 + 8 = 2. \] \[ |\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})| = 32. \]
Step 4: Shortest Distance:
\[ \text{Shortest Distance} = \frac{32}{\sqrt{355}}. \]
Step 5: Simplify:
\[ m = 32, \quad n = 355, \quad \gcd(m, n) = 1. \]
Sum:
\[ m + n = 32 + 355 = 387. \]
Final Answer:
\[ \boxed{387.} \]
