\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \cdot \frac{\sqrt{3}}{2} \]
Given:
\[ |\vec{c} - \vec{a}| = 2\sqrt{2} \]
Using the formula for magnitude:
\[ |\vec{c}|^2 + |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{c} = 8 \]
\[ |\vec{c}|^2 + 38 - 12|\vec{c}| = 8 \]
\[ |\vec{c}|^2 - 12|\vec{c}| + 30 = 0 \]
Solving this quadratic equation:
\[ |\vec{c}| = \frac{12 \pm \sqrt{144 - 120}}{2} \]
\[ |\vec{c}| = \frac{12 \pm 2\sqrt{6}}{2} \]
\[ |\vec{c}| = 6 + \sqrt{6} \]
Now, calculating \( \vec{a} \times \vec{b} \):
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} \]
\[ = -\hat{i} + 7\hat{j} + 5\hat{k} \]
\[ |\vec{a} \times \vec{b}| = \sqrt{27} \]
Thus,
\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{27}(6 + \sqrt{6}) \cdot \frac{\sqrt{3}}{2} \]
\[ = \frac{9}{2}(6 + \sqrt{6}) \]
To solve this problem, we need to find the magnitude of \(|(\vec{a} \times \vec{b}) \times \vec{c}|\), where \(\vec{a} = 6\hat{i} + \hat{j} - \hat{k}\) and \(\vec{b} = \hat{i} + \hat{j}\), given the conditions involving the vector \(\vec{c}\).
| \(\hat{i}\) | \(\hat{j}\) | \(\hat{k}\) |
| 6 | 1 | -1 |
| 1 | 1 | 0 |
Calculating the determinant:
This gives \(\vec{a} \times \vec{b} = \hat{i} - \hat{j} + 5\hat{k}\).
\(| \vec{a} \times \vec{b} | = \sqrt{1^2 + (-1)^2 + 5^2} = \sqrt{1 + 1 + 25} = \sqrt{27} = 3\sqrt{3}\)
\(\vec{a} \cdot \vec{c} = 6c_i + c_j - c_k = 6|\vec{c}| \Rightarrow 6c_i + c_j - c_k = 6\sqrt{c_i^2 + c_j^2 + c_k^2}\)
\(\sqrt{(c_i - 6)^2 + (c_j - 1)^2 + (c_k + 1)^2} = 2\sqrt{2}\)
\(\vec{a} \times \vec{b} \cdot \vec{c} = 9\sqrt{3}\)
\(|(\vec{a} \times \vec{b}) \times \vec{c}| = \sqrt{(|\vec{a} \times \vec{b}|^2 |\vec{c}|^2 - (\vec{a} \times \vec{b} \cdot \vec{c})^2)}\)\(= \frac{9}{2}(6 + \sqrt{6})\)
Thus, the answer is \(\frac{9}{2}(6 + \sqrt{6})\).
0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: