\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \cdot \frac{\sqrt{3}}{2} \]
Given:
\[ |\vec{c} - \vec{a}| = 2\sqrt{2} \]
Using the formula for magnitude:
\[ |\vec{c}|^2 + |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{c} = 8 \]
\[ |\vec{c}|^2 + 38 - 12|\vec{c}| = 8 \]
\[ |\vec{c}|^2 - 12|\vec{c}| + 30 = 0 \]
Solving this quadratic equation:
\[ |\vec{c}| = \frac{12 \pm \sqrt{144 - 120}}{2} \]
\[ |\vec{c}| = \frac{12 \pm 2\sqrt{6}}{2} \]
\[ |\vec{c}| = 6 + \sqrt{6} \]
Now, calculating \( \vec{a} \times \vec{b} \):
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} \]
\[ = -\hat{i} + 7\hat{j} + 5\hat{k} \]
\[ |\vec{a} \times \vec{b}| = \sqrt{27} \]
Thus,
\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{27}(6 + \sqrt{6}) \cdot \frac{\sqrt{3}}{2} \]
\[ = \frac{9}{2}(6 + \sqrt{6}) \]
To solve this problem, we need to find the magnitude of \(|(\vec{a} \times \vec{b}) \times \vec{c}|\), where \(\vec{a} = 6\hat{i} + \hat{j} - \hat{k}\) and \(\vec{b} = \hat{i} + \hat{j}\), given the conditions involving the vector \(\vec{c}\).
| \(\hat{i}\) | \(\hat{j}\) | \(\hat{k}\) |
| 6 | 1 | -1 |
| 1 | 1 | 0 |
Calculating the determinant:
This gives \(\vec{a} \times \vec{b} = \hat{i} - \hat{j} + 5\hat{k}\).
\(| \vec{a} \times \vec{b} | = \sqrt{1^2 + (-1)^2 + 5^2} = \sqrt{1 + 1 + 25} = \sqrt{27} = 3\sqrt{3}\)
\(\vec{a} \cdot \vec{c} = 6c_i + c_j - c_k = 6|\vec{c}| \Rightarrow 6c_i + c_j - c_k = 6\sqrt{c_i^2 + c_j^2 + c_k^2}\)
\(\sqrt{(c_i - 6)^2 + (c_j - 1)^2 + (c_k + 1)^2} = 2\sqrt{2}\)
\(\vec{a} \times \vec{b} \cdot \vec{c} = 9\sqrt{3}\)
\(|(\vec{a} \times \vec{b}) \times \vec{c}| = \sqrt{(|\vec{a} \times \vec{b}|^2 |\vec{c}|^2 - (\vec{a} \times \vec{b} \cdot \vec{c})^2)}\)\(= \frac{9}{2}(6 + \sqrt{6})\)
Thus, the answer is \(\frac{9}{2}(6 + \sqrt{6})\).
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :