\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \cdot \frac{\sqrt{3}}{2} \]
Given:
\[ |\vec{c} - \vec{a}| = 2\sqrt{2} \]
Using the formula for magnitude:
\[ |\vec{c}|^2 + |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{c} = 8 \]
\[ |\vec{c}|^2 + 38 - 12|\vec{c}| = 8 \]
\[ |\vec{c}|^2 - 12|\vec{c}| + 30 = 0 \]
Solving this quadratic equation:
\[ |\vec{c}| = \frac{12 \pm \sqrt{144 - 120}}{2} \]
\[ |\vec{c}| = \frac{12 \pm 2\sqrt{6}}{2} \]
\[ |\vec{c}| = 6 + \sqrt{6} \]
Now, calculating \( \vec{a} \times \vec{b} \):
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} \]
\[ = -\hat{i} + 7\hat{j} + 5\hat{k} \]
\[ |\vec{a} \times \vec{b}| = \sqrt{27} \]
Thus,
\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{27}(6 + \sqrt{6}) \cdot \frac{\sqrt{3}}{2} \]
\[ = \frac{9}{2}(6 + \sqrt{6}) \]
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |