\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \cdot \frac{\sqrt{3}}{2} \]
Given:
\[ |\vec{c} - \vec{a}| = 2\sqrt{2} \]
Using the formula for magnitude:
\[ |\vec{c}|^2 + |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{c} = 8 \]
\[ |\vec{c}|^2 + 38 - 12|\vec{c}| = 8 \]
\[ |\vec{c}|^2 - 12|\vec{c}| + 30 = 0 \]
Solving this quadratic equation:
\[ |\vec{c}| = \frac{12 \pm \sqrt{144 - 120}}{2} \]
\[ |\vec{c}| = \frac{12 \pm 2\sqrt{6}}{2} \]
\[ |\vec{c}| = 6 + \sqrt{6} \]
Now, calculating \( \vec{a} \times \vec{b} \):
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} \]
\[ = -\hat{i} + 7\hat{j} + 5\hat{k} \]
\[ |\vec{a} \times \vec{b}| = \sqrt{27} \]
Thus,
\[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{27}(6 + \sqrt{6}) \cdot \frac{\sqrt{3}}{2} \]
\[ = \frac{9}{2}(6 + \sqrt{6}) \]