To solve the problem, we need to understand the condition given for the circles touching externally and how the point \((6, 6)\) divides the line segment joining the centers of the circles.
\(\frac{16 + \alpha}{3} = 6 \Rightarrow 16 + \alpha = 18 \Rightarrow \alpha = 2\)
\(\frac{15 + \beta}{3} = 6 \Rightarrow 15 + \beta = 18 \Rightarrow \beta = 3\)
\((8 - 2)^2 = 36\)
\(\left(\frac{15}{2} - 3\right)^2 = {\left(\frac{9}{2}\right)}^2 = \frac{81}{4}\)
So, \(r_1 + r_2 = \frac{15}{2}\).
\(\alpha + \beta = 2 + 3 = 5\)
We know from square of sum, \((r_1 + r_2)^2 = r_1^2 + r_2^2 + 2r_1r_2\).
\(\left(\frac{15}{2}\right)^2 = r_1^2 + r_2^2 + 2r_1r_2\)
\(\frac{225}{4} - 2r_1r_2 = r_1^2 + r_2^2\)
\(r_1^2 + r_2^2 = \frac{225}{4} - 49\)
\(= \frac{225}{4} - \frac{196}{4} = \frac{29}{4}\)
Hence, \((\alpha + \beta) + 4(r_1^2 + r_2^2) = 130\).
The centers of the circles are \((\alpha, \beta)\) for \(C_1\) and \((8, \frac{15}{2})\) for \(C_2\).
Since the point \((6, 6)\) divides the line segment joining the centers in the ratio \(2:1\), apply the section formula:
\[ \frac{16 + \alpha}{3} = 6 \implies 16 + \alpha = 18 \implies \alpha = 2, \]
\[ \frac{15 + \beta}{3} = 6 \implies 15 + \beta = 18 \implies \beta = 3. \]
Thus, the center of \(C_1\) is \((\alpha, \beta) = (2, 3)\).
The circles touch externally at the point \((6, 6)\), so the distance between the centers equals the sum of the radii:
\[ C_1C_2 = r_1 + r_2. \]
Using the distance formula:
\[ C_1C_2 = \sqrt{(2 - 8)^2 + \left(3 - \frac{15}{2}\right)^2}, \]
\[ C_1C_2 = \sqrt{(-6)^2 + \left(-\frac{9}{2}\right)^2} = \sqrt{36 + \frac{81}{4}} = \sqrt{\frac{144}{4} + \frac{81}{4}} = \sqrt{\frac{225}{4}} = \frac{15}{2}. \]
Thus, \(r_1 + r_2 = \frac{15}{2}\).
Now, since the point \((6, 6)\) lies on both circles, for \(C_1\):
\[ (6 - \alpha)^2 + (6 - \beta)^2 = r_1^2, \]
\[ (6 - 2)^2 + (6 - 3)^2 = r_1^2 \implies 4^2 + 3^2 = r_1^2 \implies r_1^2 = 16 + 9 = 25. \]
So, \(r_1 = 5\). Substituting \(r_1 = 5\) into \(r_1 + r_2 = \frac{15}{2}\):
\[ 5 + r_2 = \frac{15}{2} \implies r_2 = \frac{15}{2} - 5 = \frac{5}{2}. \]
Finally, calculate \((\alpha + \beta) + 4(r_1^2 + r_2^2)\):
\[ \alpha + \beta = 2 + 3 = 5, \]
\[ r_1^2 + r_2^2 = 25 + \left(\frac{5}{2}\right)^2 = 25 + \frac{25}{4} = \frac{100}{4} + \frac{25}{4} = \frac{125}{4}, \]
\[ 4(r_1^2 + r_2^2) = 4 \cdot \frac{125}{4} = 125. \]
Thus:
\[ (\alpha + \beta) + 4(r_1^2 + r_2^2) = 5 + 125 = 130. \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
