To solve the problem, we need to understand the condition given for the circles touching externally and how the point \((6, 6)\) divides the line segment joining the centers of the circles.
\(\frac{16 + \alpha}{3} = 6 \Rightarrow 16 + \alpha = 18 \Rightarrow \alpha = 2\)
\(\frac{15 + \beta}{3} = 6 \Rightarrow 15 + \beta = 18 \Rightarrow \beta = 3\)
\((8 - 2)^2 = 36\)
\(\left(\frac{15}{2} - 3\right)^2 = {\left(\frac{9}{2}\right)}^2 = \frac{81}{4}\)
So, \(r_1 + r_2 = \frac{15}{2}\).
\(\alpha + \beta = 2 + 3 = 5\)
We know from square of sum, \((r_1 + r_2)^2 = r_1^2 + r_2^2 + 2r_1r_2\).
\(\left(\frac{15}{2}\right)^2 = r_1^2 + r_2^2 + 2r_1r_2\)
\(\frac{225}{4} - 2r_1r_2 = r_1^2 + r_2^2\)
\(r_1^2 + r_2^2 = \frac{225}{4} - 49\)
\(= \frac{225}{4} - \frac{196}{4} = \frac{29}{4}\)
Hence, \((\alpha + \beta) + 4(r_1^2 + r_2^2) = 130\).
The centers of the circles are \((\alpha, \beta)\) for \(C_1\) and \((8, \frac{15}{2})\) for \(C_2\).
Since the point \((6, 6)\) divides the line segment joining the centers in the ratio \(2:1\), apply the section formula:
\[ \frac{16 + \alpha}{3} = 6 \implies 16 + \alpha = 18 \implies \alpha = 2, \]
\[ \frac{15 + \beta}{3} = 6 \implies 15 + \beta = 18 \implies \beta = 3. \]
Thus, the center of \(C_1\) is \((\alpha, \beta) = (2, 3)\).
The circles touch externally at the point \((6, 6)\), so the distance between the centers equals the sum of the radii:
\[ C_1C_2 = r_1 + r_2. \]
Using the distance formula:
\[ C_1C_2 = \sqrt{(2 - 8)^2 + \left(3 - \frac{15}{2}\right)^2}, \]
\[ C_1C_2 = \sqrt{(-6)^2 + \left(-\frac{9}{2}\right)^2} = \sqrt{36 + \frac{81}{4}} = \sqrt{\frac{144}{4} + \frac{81}{4}} = \sqrt{\frac{225}{4}} = \frac{15}{2}. \]
Thus, \(r_1 + r_2 = \frac{15}{2}\).
Now, since the point \((6, 6)\) lies on both circles, for \(C_1\):
\[ (6 - \alpha)^2 + (6 - \beta)^2 = r_1^2, \]
\[ (6 - 2)^2 + (6 - 3)^2 = r_1^2 \implies 4^2 + 3^2 = r_1^2 \implies r_1^2 = 16 + 9 = 25. \]
So, \(r_1 = 5\). Substituting \(r_1 = 5\) into \(r_1 + r_2 = \frac{15}{2}\):
\[ 5 + r_2 = \frac{15}{2} \implies r_2 = \frac{15}{2} - 5 = \frac{5}{2}. \]
Finally, calculate \((\alpha + \beta) + 4(r_1^2 + r_2^2)\):
\[ \alpha + \beta = 2 + 3 = 5, \]
\[ r_1^2 + r_2^2 = 25 + \left(\frac{5}{2}\right)^2 = 25 + \frac{25}{4} = \frac{100}{4} + \frac{25}{4} = \frac{125}{4}, \]
\[ 4(r_1^2 + r_2^2) = 4 \cdot \frac{125}{4} = 125. \]
Thus:
\[ (\alpha + \beta) + 4(r_1^2 + r_2^2) = 5 + 125 = 130. \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
