To solve the problem, we need to understand the condition given for the circles touching externally and how the point \((6, 6)\) divides the line segment joining the centers of the circles.
\(\frac{16 + \alpha}{3} = 6 \Rightarrow 16 + \alpha = 18 \Rightarrow \alpha = 2\)
\(\frac{15 + \beta}{3} = 6 \Rightarrow 15 + \beta = 18 \Rightarrow \beta = 3\)
\((8 - 2)^2 = 36\)
\(\left(\frac{15}{2} - 3\right)^2 = {\left(\frac{9}{2}\right)}^2 = \frac{81}{4}\)
So, \(r_1 + r_2 = \frac{15}{2}\).
\(\alpha + \beta = 2 + 3 = 5\)
We know from square of sum, \((r_1 + r_2)^2 = r_1^2 + r_2^2 + 2r_1r_2\).
\(\left(\frac{15}{2}\right)^2 = r_1^2 + r_2^2 + 2r_1r_2\)
\(\frac{225}{4} - 2r_1r_2 = r_1^2 + r_2^2\)
\(r_1^2 + r_2^2 = \frac{225}{4} - 49\)
\(= \frac{225}{4} - \frac{196}{4} = \frac{29}{4}\)
Hence, \((\alpha + \beta) + 4(r_1^2 + r_2^2) = 130\).
The centers of the circles are \((\alpha, \beta)\) for \(C_1\) and \((8, \frac{15}{2})\) for \(C_2\).
Since the point \((6, 6)\) divides the line segment joining the centers in the ratio \(2:1\), apply the section formula:
\[ \frac{16 + \alpha}{3} = 6 \implies 16 + \alpha = 18 \implies \alpha = 2, \]
\[ \frac{15 + \beta}{3} = 6 \implies 15 + \beta = 18 \implies \beta = 3. \]
Thus, the center of \(C_1\) is \((\alpha, \beta) = (2, 3)\).
The circles touch externally at the point \((6, 6)\), so the distance between the centers equals the sum of the radii:
\[ C_1C_2 = r_1 + r_2. \]
Using the distance formula:
\[ C_1C_2 = \sqrt{(2 - 8)^2 + \left(3 - \frac{15}{2}\right)^2}, \]
\[ C_1C_2 = \sqrt{(-6)^2 + \left(-\frac{9}{2}\right)^2} = \sqrt{36 + \frac{81}{4}} = \sqrt{\frac{144}{4} + \frac{81}{4}} = \sqrt{\frac{225}{4}} = \frac{15}{2}. \]
Thus, \(r_1 + r_2 = \frac{15}{2}\).
Now, since the point \((6, 6)\) lies on both circles, for \(C_1\):
\[ (6 - \alpha)^2 + (6 - \beta)^2 = r_1^2, \]
\[ (6 - 2)^2 + (6 - 3)^2 = r_1^2 \implies 4^2 + 3^2 = r_1^2 \implies r_1^2 = 16 + 9 = 25. \]
So, \(r_1 = 5\). Substituting \(r_1 = 5\) into \(r_1 + r_2 = \frac{15}{2}\):
\[ 5 + r_2 = \frac{15}{2} \implies r_2 = \frac{15}{2} - 5 = \frac{5}{2}. \]
Finally, calculate \((\alpha + \beta) + 4(r_1^2 + r_2^2)\):
\[ \alpha + \beta = 2 + 3 = 5, \]
\[ r_1^2 + r_2^2 = 25 + \left(\frac{5}{2}\right)^2 = 25 + \frac{25}{4} = \frac{100}{4} + \frac{25}{4} = \frac{125}{4}, \]
\[ 4(r_1^2 + r_2^2) = 4 \cdot \frac{125}{4} = 125. \]
Thus:
\[ (\alpha + \beta) + 4(r_1^2 + r_2^2) = 5 + 125 = 130. \]
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 