\[ \frac{z_1 - 2z_2}{\frac{1}{2} - 2z_1z_2} \times \frac{\overline{z_1} - 2\overline{z_2}}{\frac{1}{2} - z_1z_2} = 4 \]
\[ \lvert z_1 \rvert^2 \left\lvert 2z_1z_2 - 2z_2\overline{z_1} + 4\lvert z_2 \rvert^2 \right\rvert^2 \]
\[ = 4 \left( \frac{1}{4}(z_1\overline{z_2} - z_2\overline{z_1})^2 + \lvert z_1 \rvert^2 \lvert z_2 \rvert^2 \right) \]
\[ z_1\overline{z_1} + 2z_2 \cdot 2\overline{z_2} - z_1z_2 \cdot z_2\overline{z_2} - 1 = 0 \]
\[ (z_1\overline{z_1} - 1)(1 - 2z_2\overline{z_2}) = 0 \]
\[ (\lvert z_1 \rvert^2 - 1)\left((2\lvert z_2 \rvert^2 - 1)\right) = 0 \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: