Given: \[ \int_{\log_e \alpha}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}. \]
Let: \[ e^x - 1 = t^2 \implies e^x dx = 2t dt \quad \text{and} \quad dx = \frac{2t dt}{t^2 + 1}. \]
Substituting into the integral: \[ \int \frac{dx}{\sqrt{e^x - 1}} = \int \frac{2t dt}{(t^2 + 1) \cdot t} = \int \frac{2 dt}{t^2 + 1} = 2 \tan^{-1} t. \]
Reverting the substitution: \[ 2 \tan^{-1} (\sqrt{e^x - 1}) \Big|_{\log_e \alpha}^{\log_e 4}. \]
Evaluating at the limits: \[ 2 \left[ \tan^{-1} \left( \sqrt{e^{\log_e 4} - 1} \right) - \tan^{-1} \left( \sqrt{e^\alpha - 1} \right) \right] = \frac{\pi}{6}. \] Simplifying: \[ 2 \left[ \tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) \right] = \frac{\pi}{6}. \]
Dividing by 2: \[ \tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}. \]
Since \(\tan^{-1} (\sqrt{3}) = \frac{\pi}{3}\), we have: \[ \frac{\pi}{3} - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}. \]
Rearranging: \[ \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{4}. \]
Thus: \[ \sqrt{e^\alpha - 1} = 1 \implies e^\alpha - 1 = 1 \implies e^\alpha = 2. \]
Therefore: \[ e^{-\alpha} = \frac{1}{2}. \]
The roots \( e^\alpha = 2 \) and \( e^{-\alpha} = \frac{1}{2} \) satisfy the equation: \[ x^2 - \left( 2 + \frac{1}{2} \right) x + 1 = 0 \implies 2x^2 - 5x + 2 = 0. \]
Therefore: \[ 2x^2 - 5x + 2 = 0. \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: