To solve this problem, we begin by evaluating the given integral:
\[\int_{\log_e a}^{4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}.\]Notice that the integral involves a square root and exponential function, which suggests a possible substitution to simplify it. Assume the substitution:
\(e^x - 1 = t^2\).
Differentiating both sides with respect to \(x\) gives:
\[e^x \, dx = 2t \, dt.\]This means \(dx = \frac{2t}{e^x} \, dt\). Rewrite the integral in terms of \(t\):
\[\int \frac{dx}{\sqrt{e^x - 1}} = \int \frac{1}{t} \cdot \frac{2t}{e^x} \, dt = 2 \int \frac{dt}{e^x}.\]Back-substitute \(e^x = t^2 + 1\):
\[= 2 \int \frac{dt}{t^2 + 1}.\]This integral is the standard inverse tangent function:
\[= 2 \tan^{-1}(t).\]Now, let's use the limits of the integral. When \(x = \log_e a\), \(e^x - 1 = a - 1\), so \(t = \sqrt{a - 1}\). When \(x = 4\), \(t = \sqrt{e^4 - 1}\). Therefore, the definite integral becomes:
\[2 \left( \tan^{-1}(\sqrt{e^4 - 1}) - \tan^{-1}(\sqrt{a - 1}) \right) = \frac{\pi}{6}.\]Thus,
\[\tan^{-1}(\sqrt{e^4 - 1}) - \tan^{-1}(\sqrt{a - 1}) = \frac{\pi}{12}.\]This indicates that \(\alpha\) satisfies this equation:
\(e^\alpha = e^4 - 1\) and \(e^{-\alpha} = a - 1\).
We are told \(e^\alpha\) and \(e^{-\alpha}\) are roots of a quadratic equation. Using the property of roots:
This matches the quadratic:
\[2x^2 - 5x + 2 = 0.\]Therefore, the correct equation is:
\(2x^2 - 5x + 2 = 0.\)
Given: \[ \int_{\log_e \alpha}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}. \]
Let: \[ e^x - 1 = t^2 \implies e^x dx = 2t dt \quad \text{and} \quad dx = \frac{2t dt}{t^2 + 1}. \]
Substituting into the integral: \[ \int \frac{dx}{\sqrt{e^x - 1}} = \int \frac{2t dt}{(t^2 + 1) \cdot t} = \int \frac{2 dt}{t^2 + 1} = 2 \tan^{-1} t. \]
Reverting the substitution: \[ 2 \tan^{-1} (\sqrt{e^x - 1}) \Big|_{\log_e \alpha}^{\log_e 4}. \]
Evaluating at the limits: \[ 2 \left[ \tan^{-1} \left( \sqrt{e^{\log_e 4} - 1} \right) - \tan^{-1} \left( \sqrt{e^\alpha - 1} \right) \right] = \frac{\pi}{6}. \] Simplifying: \[ 2 \left[ \tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) \right] = \frac{\pi}{6}. \]
Dividing by 2: \[ \tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}. \]
Since \(\tan^{-1} (\sqrt{3}) = \frac{\pi}{3}\), we have: \[ \frac{\pi}{3} - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}. \]
Rearranging: \[ \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{4}. \]
Thus: \[ \sqrt{e^\alpha - 1} = 1 \implies e^\alpha - 1 = 1 \implies e^\alpha = 2. \]
Therefore: \[ e^{-\alpha} = \frac{1}{2}. \]
The roots \( e^\alpha = 2 \) and \( e^{-\alpha} = \frac{1}{2} \) satisfy the equation: \[ x^2 - \left( 2 + \frac{1}{2} \right) x + 1 = 0 \implies 2x^2 - 5x + 2 = 0. \]
Therefore: \[ 2x^2 - 5x + 2 = 0. \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.