Let the line be represented by:
\[x = t, \quad y = 2t + 1, \quad z = 3t + 2.\]
Given the point \(Q(1, 6, 4)\), we find the foot of the perpendicular \(A\) by letting:
\[A\left(\frac{17}{14}, \frac{48}{14}, \frac{79}{14}\right).\]
The direction vector of the line is:
\[\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}.\]
To find the image point \(P(\alpha, \beta, \gamma)\), we reflect \(Q\) across \(A\) using:
\[\alpha = \frac{20}{14}, \quad \beta = \frac{12}{14}, \quad \gamma = \frac{102}{14}.\]
Calculating \(2\alpha + \beta + \gamma\):
\[2\alpha + \beta + \gamma = \frac{154}{14} = 11.\]
Answer: 11.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).