The problem asks to evaluate the definite integral \( \int_0^1 \left(\left[x^2\right] + \left\lfloor \frac{x^2}{2} \right\rfloor\right) dx \). However, for the interval \(x \in [0, 1)\), both \(x^2\) and \(x^2/2\) are less than 1, making both \([x^2]\) and \(\lfloor x^2/2 \rfloor\) equal to 0. This results in an integral value of 0, which contradicts the given form of the answer. A known version of this problem uses an upper limit of 3. Assuming the intended problem is to evaluate \( \int_0^3 \left(\left[x^2\right] + \left\lfloor \frac{x^2}{2} \right\rfloor\right) dx \), we proceed with this correction to find the value of \(a+b+c\).
The greatest integer function, \([t]\) or \(\lfloor t \rfloor\), is a step function. The value of \(\lfloor f(x) \rfloor\) is constant between the points where the argument \(f(x)\) takes on integer values. To evaluate the definite integral of a step function, the interval of integration is broken down into sub-intervals at these points of discontinuity. The integral is then computed by summing the areas of the rectangles formed over each sub-interval, where the height of each rectangle is the constant value of the function in that sub-interval.
Step 1: Decompose the integral into two separate integrals.
Let \(I = \int_0^3 \left(\left[x^2\right] + \left\lfloor \frac{x^2}{2} \right\rfloor\right) dx\). We can split this as:
\[ I = \int_0^3 \left[x^2\right] dx + \int_0^3 \left\lfloor \frac{x^2}{2} \right\rfloor dx = I_1 + I_2 \]Step 2: Evaluate the first integral, \(I_1 = \int_0^3 [x^2] dx\).
The value of \([x^2]\) changes when \(x^2\) is an integer. For \(x \in [0, 3]\), \(x^2\) ranges from 0 to 9. The points of discontinuity are \(x = \sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{8}, 3\). We split the integral at these points:
\[ I_1 = \int_0^1 0\,dx + \int_1^{\sqrt{2}} 1\,dx + \int_{\sqrt{2}}^{\sqrt{3}} 2\,dx + \int_{\sqrt{3}}^{2} 3\,dx + \int_{2}^{\sqrt{5}} 4\,dx + \int_{\sqrt{5}}^{\sqrt{6}} 5\,dx + \int_{\sqrt{6}}^{\sqrt{7}} 6\,dx + \int_{\sqrt{7}}^{\sqrt{8}} 7\,dx + \int_{\sqrt{8}}^3 8\,dx \]Step 3: Compute the value of \(I_1\).
\[ I_1 = 0 + (\sqrt{2}-1) + 2(\sqrt{3}-\sqrt{2}) + 3(2-\sqrt{3}) + 4(\sqrt{5}-2) + 5(\sqrt{6}-\sqrt{5}) + 6(\sqrt{7}-\sqrt{6}) + 7(2\sqrt{2}-\sqrt{7}) + 8(3-2\sqrt{2}) \] \[ = \sqrt{2}-1 + 2\sqrt{3}-2\sqrt{2} + 6-3\sqrt{3} + 4\sqrt{5}-8 + 5\sqrt{6}-5\sqrt{5} + 6\sqrt{7}-6\sqrt{6} + 14\sqrt{2}-7\sqrt{7} + 24-16\sqrt{2} \]Grouping the terms:
\[ I_1 = (-1+6-8+24) + (1-2+14-16)\sqrt{2} + (2-3)\sqrt{3} + (4-5)\sqrt{5} + (5-6)\sqrt{6} + (6-7)\sqrt{7} \] \[ I_1 = 21 - 3\sqrt{2} - \sqrt{3} - \sqrt{5} - \sqrt{6} - \sqrt{7} \]Step 4: Evaluate the second integral, \(I_2 = \int_0^3 \lfloor \frac{x^2}{2} \rfloor dx\).
The value of \(\lfloor x^2/2 \rfloor\) changes when \(x^2/2\) is an integer, i.e., when \(x^2 = 2k\). For \(x \in [0, 3]\), \(x^2/2\) ranges from 0 to 4.5. The points of discontinuity are \(x = \sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}\). We split the integral accordingly:
\[ I_2 = \int_0^{\sqrt{2}} 0\,dx + \int_{\sqrt{2}}^2 1\,dx + \int_2^{\sqrt{6}} 2\,dx + \int_{\sqrt{6}}^{\sqrt{8}} 3\,dx + \int_{\sqrt{8}}^3 4\,dx \]Step 5: Compute the value of \(I_2\).
\[ I_2 = 0 + (2-\sqrt{2}) + 2(\sqrt{6}-2) + 3(2\sqrt{2}-\sqrt{6}) + 4(3-2\sqrt{2}) \] \[ = 2-\sqrt{2} + 2\sqrt{6}-4 + 6\sqrt{2}-3\sqrt{6} + 12-8\sqrt{2} \]Grouping the terms:
\[ I_2 = (2-4+12) + (-1+6-8)\sqrt{2} + (2-3)\sqrt{6} \] \[ I_2 = 10 - 3\sqrt{2} - \sqrt{6} \]Step 6: Calculate the total integral \(I = I_1 + I_2\).
\[ I = (21 - 3\sqrt{2} - \sqrt{3} - \sqrt{5} - \sqrt{6} - \sqrt{7}) + (10 - 3\sqrt{2} - \sqrt{6}) \] \[ I = (21+10) + (-3-3)\sqrt{2} - \sqrt{3} - \sqrt{5} + (-1-1)\sqrt{6} - \sqrt{7} \] \[ I = 31 - 6\sqrt{2} - \sqrt{3} - \sqrt{5} - 2\sqrt{6} - \sqrt{7} \]Step 7: Compare with the given expression to find \(a, b, c\).
The given form of the result is \(a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7}\). Comparing this with our calculated value of \(I\):
\[ 31 - 6\sqrt{2} - \sqrt{3} - \sqrt{5} - 2\sqrt{6} - \sqrt{7} = a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7} \]By comparing the coefficients, we get:
\[ a = 31 \] \[ b = -6 \] \[ c = -2 \]The values \(a, b, c\) are all integers.
Finally, we compute the value of \(a+b+c\):
\[ a+b+c = 31 + (-6) + (-2) = 31 - 8 = 23 \]The value of \(a+b+c\) is 23.
Breaking the integral into intervals based on values of \( x \):
\[\int_0^3 \left( \lfloor x^2 \rfloor + \left\lfloor \frac{x^2}{2} \right\rfloor \right) dx\]
\[= \int_0^1 0 \, dx + \int_1^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{\sqrt{5}} 3 \, dx + \int_{\sqrt{5}}^{\sqrt{6}} 4 \, dx + \int_{\sqrt{6}}^{\sqrt{7}} 5 \, dx\]
\[+ \int_{\sqrt{7}}^{\sqrt{8}} 6 \, dx + \int_{\sqrt{8}}^3 7 \, dx\]
After evaluating each integral, we get:
\[a = 31, \quad b = -6, \quad c = -2\]
Thus,
\[a + b + c = 31 - 6 - 2 = 23\]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
