Breaking the integral into intervals based on values of \( x \):
\[\int_0^3 \left( \lfloor x^2 \rfloor + \left\lfloor \frac{x^2}{2} \right\rfloor \right) dx\]
\[= \int_0^1 0 \, dx + \int_1^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{\sqrt{5}} 3 \, dx + \int_{\sqrt{5}}^{\sqrt{6}} 4 \, dx + \int_{\sqrt{6}}^{\sqrt{7}} 5 \, dx\]
\[+ \int_{\sqrt{7}}^{\sqrt{8}} 6 \, dx + \int_{\sqrt{8}}^3 7 \, dx\]
After evaluating each integral, we get:
\[a = 31, \quad b = -6, \quad c = -2\]
Thus,
\[a + b + c = 31 - 6 - 2 = 23\]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).