Breaking the integral into intervals based on values of \( x \):
\[\int_0^3 \left( \lfloor x^2 \rfloor + \left\lfloor \frac{x^2}{2} \right\rfloor \right) dx\]
\[= \int_0^1 0 \, dx + \int_1^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{\sqrt{5}} 3 \, dx + \int_{\sqrt{5}}^{\sqrt{6}} 4 \, dx + \int_{\sqrt{6}}^{\sqrt{7}} 5 \, dx\]
\[+ \int_{\sqrt{7}}^{\sqrt{8}} 6 \, dx + \int_{\sqrt{8}}^3 7 \, dx\]
After evaluating each integral, we get:
\[a = 31, \quad b = -6, \quad c = -2\]
Thus,
\[a + b + c = 31 - 6 - 2 = 23\]
The integral \(\int e^x \sqrt{e^x} \, dx\) equals: