Consider a rectangle inscribed in the region bounded by the parabola \(y^2 = 2x\) and the line \(x = 24\). Let the coordinates of the upper right corner of the rectangle be \(\left(\frac{b^2}{2}, b\right)\), where \(b\) is the \(y\)-coordinate of the corner on the parabola.
The length of the rectangle along the \(x\)-axis is:
\(2 \left(24 - \frac{b^2}{2}\right)\).
The height of the rectangle is:
\(b\).
Therefore, the area \(A\) of the rectangle is given by:
\(A = 2 \left(24 - \frac{b^2}{2}\right) \times b\).
Simplifying:
\(A = 2 \left(24b - \frac{b^3}{2}\right)\),
\(A = 48b - b^3\).
To find the maximum area, we differentiate \(A\) with respect to \(b\) and set the derivative equal to zero:
\(\frac{dA}{db} = 48 - 3b^2 = 0\).
Solving for \(b\):
\(3b^2 = 48\),
\(b^2 = 16\),
\(b = 4\) (since \(b>0\)).
Substituting \(b = 4\) back into the expression for \(A\):
\(A = 2 \left(24 - \frac{4^2}{2}\right) \times 4\),
\(A = 2 \times (24 - 8) \times 4\),
\(A = 2 \times 16 \times 4\),
\(A = 128\).
Therefore, the maximum area of the rectangle is:
128.
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Find the intervals in which the function\[ f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11 \]
is:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).