Consider a rectangle inscribed in the region bounded by the parabola \(y^2 = 2x\) and the line \(x = 24\). Let the coordinates of the upper right corner of the rectangle be \(\left(\frac{b^2}{2}, b\right)\), where \(b\) is the \(y\)-coordinate of the corner on the parabola.
The length of the rectangle along the \(x\)-axis is:
\(2 \left(24 - \frac{b^2}{2}\right)\).
The height of the rectangle is:
\(b\).
Therefore, the area \(A\) of the rectangle is given by:
\(A = 2 \left(24 - \frac{b^2}{2}\right) \times b\).
Simplifying:
\(A = 2 \left(24b - \frac{b^3}{2}\right)\),
\(A = 48b - b^3\).
To find the maximum area, we differentiate \(A\) with respect to \(b\) and set the derivative equal to zero:
\(\frac{dA}{db} = 48 - 3b^2 = 0\).
Solving for \(b\):
\(3b^2 = 48\),
\(b^2 = 16\),
\(b = 4\) (since \(b>0\)).
Substituting \(b = 4\) back into the expression for \(A\):
\(A = 2 \left(24 - \frac{4^2}{2}\right) \times 4\),
\(A = 2 \times (24 - 8) \times 4\),
\(A = 2 \times 16 \times 4\),
\(A = 128\).
Therefore, the maximum area of the rectangle is:
128.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (a) Show that the area \( A \) of the right triangle is maximum at the critical point.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(ii)} Find the derivative of the area \( A \) with respect to the height on the wall \( x \), and find its critical point.