\[a = 1 - \frac{\binom{3}{5}}{\binom{12}{5}}\]
\[b = 3 \cdot \frac{\binom{9}{4}}{\binom{12}{5}}\]
\[c = 3 \cdot \frac{\binom{9}{3}}{\binom{12}{5}}\]
\[d = 1 \cdot \frac{\binom{9}{2}}{\binom{12}{5}}\]
\[u = 0 \cdot a + 1 \cdot b + 2 \cdot c + 3 \cdot d = 1.25\]
\[\sigma^2 = 0 \cdot a + 1 \cdot b + 4 \cdot c + 9 \cdot d - u^2\]
\[\sigma^2 = \frac{105}{176}\]
\[\text{Ans.} \quad 176 - 105 = 71\]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).