From the matrix equation:
\[ A^3 - 4A^2 + A + 21I = 0. \]
Step 1: Taking the trace:
\[ \text{tr}(A^3) - 4\text{tr}(A^2) + \text{tr}(A) + 21 \cdot \text{tr}(I) = 0. \]
Since \(\text{tr}(I) = 3\), we find:
\[ \text{tr}(A) = 4 + 5 + b = b - 1. \]
Step 2: The determinant:
\[ |A| = -16 + a = -21 \implies a = -5. \]
Step 3: Final calculation:
\[ 2a + 3b = 2(-5) + 3(-1) = -13. \]
Final Answer:
\[ \text{-13.} \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).