From the matrix equation:
\[ A^3 - 4A^2 + A + 21I = 0. \]
Step 1: Taking the trace:
\[ \text{tr}(A^3) - 4\text{tr}(A^2) + \text{tr}(A) + 21 \cdot \text{tr}(I) = 0. \]
Since \(\text{tr}(I) = 3\), we find:
\[ \text{tr}(A) = 4 + 5 + b = b - 1. \]
Step 2: The determinant:
\[ |A| = -16 + a = -21 \implies a = -5. \]
Step 3: Final calculation:
\[ 2a + 3b = 2(-5) + 3(-1) = -13. \]
Final Answer:
\[ \text{-13.} \]