The given integral is:
\[ I_n = \int_0^1 (1 - x^k)^n dx. \]
Using integration by parts, we get:
\[ I_n = \frac{nk}{nk + 1} I_{n-1}. \]
Iterating this formula, the relationship becomes:
\[ \frac{I_n}{I_{n-1}} = \frac{nk}{nk + 1}. \]
Given:
\[ \frac{I_{21}}{I_{20}} = \frac{147}{148}, \]
we substitute into the formula:
\[ \frac{21k}{21k + 1} = \frac{147}{148}. \]
Cross-multiplying and solving:
\[ 148 \cdot 21k = 147 \cdot (21k + 1), \]
\[ 148 \cdot 21k = 147 \cdot 21k + 147, \]
\[ 21k = 147 \implies k = 7. \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).