\[ I_n = \int_{0}^{1} (1 - x^k)^n \cdot 1\, dx \] \[ I_n = (1 - x^k)^n \cdot x - nk \int_{0}^{1} (1 - x^k)^{n-1} \cdot x^{k-1}\, dx \] \[ I_n = nk \left[ \int_{0}^{1} \left( (1 - x^k)^n - (1 - x^k)^{n-1} \right) dx \right] \] \[ I_n = nk I_n - nk I_{n-1} \] \[ \frac{I_n}{I_{n-1}} = \frac{nk}{nk + 1} \] \[ \frac{I_{21}}{I_{20}} = \frac{21k}{1 + 21k} \] \[ = \frac{147}{148} \Rightarrow k = 7 \]
The given integral is:
\[ I_n = \int_0^1 (1 - x^k)^n dx. \]
Using integration by parts, we get:
\[ I_n = \frac{nk}{nk + 1} I_{n-1}. \]
Iterating this formula, the relationship becomes:
\[ \frac{I_n}{I_{n-1}} = \frac{nk}{nk + 1}. \]
Given:
\[ \frac{I_{21}}{I_{20}} = \frac{147}{148}, \]
we substitute into the formula:
\[ \frac{21k}{21k + 1} = \frac{147}{148}. \]
Cross-multiplying and solving:
\[ 148 \cdot 21k = 147 \cdot (21k + 1), \]
\[ 148 \cdot 21k = 147 \cdot 21k + 147, \]
\[ 21k = 147 \implies k = 7. \]
Match List-I with List-II
| List-I (Definite integral) | List-II (Value) |
|---|---|
| (A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
| (B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
| (C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
| (D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
| List-I (Definite integral) | List-II (Value) |
|---|---|
| (A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
| (B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
| (C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
| (D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 