Let $x_1, x_2, \ldots, x_{10}$ be ten observations such that
\[\sum_{i=1}^{10} (x_i - 2) = 30, \quad \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \quad \beta > 2\]
and their variance is $\frac{4}{5}$. If $\mu$ and $\sigma^2$ are respectively the mean and the variance of
\[ 2(x_1 - 1) + 4\beta, 2(x_2 - 1) + 4\beta, \ldots, 2(x_{10} - 1) + 4\beta\]
then $\frac{\beta \mu}{\sigma^2}$ is equal to: