Step 1: Given Components of \( \vec{a} \)
We are given the components of \( \vec{a} \) along and perpendicular to \( \vec{b} \): \[ \vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} \] Where: \[ \vec{a}_{\parallel} = \frac{16}{11} (3\hat{i} + \hat{j} - \hat{k}) \quad \text{and} \quad \vec{a}_{\perp} = \frac{1}{11} (-4\hat{i} - 5\hat{j} - 17\hat{k}) \]
Step 2: Combine the Components
Combining the vectors: \[ \vec{a} = 4\hat{i} + \hat{j} - 3\hat{k} \]
Step 3: Compute \( \alpha^2 + \beta^2 + \gamma^2 \)
Calculating the sum of squares of the components: \[ \alpha^2 + \beta^2 + \gamma^2 = 4^2 + 1^2 + (-3)^2 \] \[ = 16 + 1 + 9 = 26 \]
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
