Step 1: Given Components of \( \vec{a} \)
We are given the components of \( \vec{a} \) along and perpendicular to \( \vec{b} \): \[ \vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} \] Where: \[ \vec{a}_{\parallel} = \frac{16}{11} (3\hat{i} + \hat{j} - \hat{k}) \quad \text{and} \quad \vec{a}_{\perp} = \frac{1}{11} (-4\hat{i} - 5\hat{j} - 17\hat{k}) \]
Step 2: Combine the Components
Combining the vectors: \[ \vec{a} = 4\hat{i} + \hat{j} - 3\hat{k} \]
Step 3: Compute \( \alpha^2 + \beta^2 + \gamma^2 \)
Calculating the sum of squares of the components: \[ \alpha^2 + \beta^2 + \gamma^2 = 4^2 + 1^2 + (-3)^2 \] \[ = 16 + 1 + 9 = 26 \]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: