Step 1: Given Components of \( \vec{a} \)
We are given the components of \( \vec{a} \) along and perpendicular to \( \vec{b} \): \[ \vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} \] Where: \[ \vec{a}_{\parallel} = \frac{16}{11} (3\hat{i} + \hat{j} - \hat{k}) \quad \text{and} \quad \vec{a}_{\perp} = \frac{1}{11} (-4\hat{i} - 5\hat{j} - 17\hat{k}) \]
Step 2: Combine the Components
Combining the vectors: \[ \vec{a} = 4\hat{i} + \hat{j} - 3\hat{k} \]
Step 3: Compute \( \alpha^2 + \beta^2 + \gamma^2 \)
Calculating the sum of squares of the components: \[ \alpha^2 + \beta^2 + \gamma^2 = 4^2 + 1^2 + (-3)^2 \] \[ = 16 + 1 + 9 = 26 \]
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).