Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Given matrix:
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]
Computing successive powers:
\[ A^2 = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}, \quad A^3 = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}, \quad A^4 = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix} \]
Continuing further:
\[ A^6 = \begin{bmatrix} 7 & -6 \\ 6 & -5 \end{bmatrix} \]
For general exponentiation:
\[ A^m = \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
For squared exponentiation:
\[ A^{m^2} = \begin{bmatrix} m^2 +1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} \]
Adding the two matrices:
\[ A^{m^2} + A^m = 3I - A^{-6} \]
\[ \begin{bmatrix} m^2+1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} + \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
Substituting values:
\[ = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -5 & 6 \\ -6 & 7 \end{bmatrix} \]
\[ = \begin{bmatrix} 8 & -6 \\ 6 & -4 \end{bmatrix} \]
Equating to given conditions:
\[ m^2 + 1 + m + 1 = 8 \]
\[ m^2 + m -6 = 0 \Rightarrow m = -3, 2 \]
Thus, the number of solutions:
\[ n(s) = 2 \]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
For the matrix [A] given below, the transpose is __________.
\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix} \]