Given Lines:
\[ L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} + 2\hat{j} + \hat{k}) \]Expanding the equation:
\[ \vec{r} = (\lambda -1)\hat{i} + 2(\lambda +1)\hat{j} + (\lambda +1)\hat{k} \] \[ L_2 : \vec{r} = (\hat{j} + \hat{k}) + \mu (2\hat{i} + 7\hat{j} + 3\hat{k}) \]Expanding the equation:
\[ \vec{r} = 2\mu\hat{i} + (1 + 7\mu)\hat{j} + (1 + 3\mu)\hat{k} \]Finding the point of intersection: Equating respective components:
From the \(\hat{i}\) component:
\[ \lambda - 1 = 2\mu \quad \text{.....(1)} \]From the \(\hat{j}\) component:
\[ 2(\lambda + 1) = 1 + 7\mu \quad \text{.....(2)} \]From the \(\hat{k}\) component:
\[ \lambda + 1 = 1 + 3\mu \quad \text{.....(3)} \]Solving equations (1), (2), and (3), we get:
\[ \lambda = 3, \quad \mu = 1 \]Finding \(\vec{a} + \vec{b}\):
\[ \vec{a} + \vec{b} = 3\hat{i} + 9\hat{j} + 4\hat{k} \]Given the line equation:
\[ L_3 : \vec{r} = 2\hat{i} + 8\hat{j} + 4\hat{k} + \alpha (3\hat{i} + 9\hat{j} + 4\hat{k}) \]For \(\alpha = 2\):
\[ \vec{r} = 8\hat{i} + 26\hat{j} + 12\hat{k} \]As shown below, bob A of a pendulum having a massless string of length \( R \) is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):