To solve the problem, we need to determine the point of intersection of the lines \( L_1 \) and \( L_2 \), and then find the equation of the line \( L_3 \) that passes through this intersection point and is parallel to \( \vec{a} + \vec{b} \). Finally, we verify which given point lies on \( L_3 \).
1. Finding the Point of Intersection:
The position vectors of the lines \( L_1 \) and \( L_2 \) are given as:
\( (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} + 2\hat{j} + \hat{k}) = (\hat{j} + \hat{k}) + \mu (2\hat{i} + 7\hat{j} + 3\hat{k}) \)
Equating the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \), we obtain the following system of equations:
\begin{align*} -1 + \lambda &= 2\mu \\ 2 + 2\lambda &= 1 + 7\mu \\ 1 + \lambda &= 1 + 3\mu \end{align*}
From the third equation, \( 1 + \lambda = 1 + 3\mu \), we get \( \lambda = 3\mu \).
Substituting \( \lambda = 3\mu \) into the first equation:
\( -1 + 3\mu = 2\mu \implies \mu = 1 \)
Substituting \( \mu = 1 \) back into \( \lambda = 3\mu \):
\( \lambda = 3(1) = 3 \)
Verifying these values in the second equation:
\( 2 + 2(3) = 1 + 7(1) \implies 8 = 8 \)
Since all three equations are satisfied, the lines intersect. Substituting \( \lambda = 3 \) into the equation for \( L_1 \):
\( \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + 3(\hat{i} + 2\hat{j} + \hat{k}) \)
\( \vec{r} = -\hat{i} + 2\hat{j} + \hat{k} + 3\hat{i} + 6\hat{j} + 3\hat{k} = 2\hat{i} + 8\hat{j} + 4\hat{k} \)
Thus, the point of intersection is \( (2, 8, 4) \).
2. Equation of Line \( L_3 \):
The line \( L_3 \) passes through the point \( (2, 8, 4) \) and is parallel to \( \vec{a} + \vec{b} \). Calculating \( \vec{a} + \vec{b} \):
\( \vec{a} + \vec{b} = (\hat{i} + 2\hat{j} + \hat{k}) + (2\hat{i} + 7\hat{j} + 3\hat{k}) = 3\hat{i} + 9\hat{j} + 4\hat{k} \)
The equation of \( L_3 \) is:
\( \vec{r} = (2\hat{i} + 8\hat{j} + 4\hat{k}) + t(3\hat{i} + 9\hat{j} + 4\hat{k}), \quad t \in \mathbb{R} \)
3. Verifying Which Point Lies on \( L_3 \):
A point \( (x, y, z) \) lies on \( L_3 \) if:
\( x = 2 + 3t, \quad y = 8 + 9t, \quad z = 4 + 4t \)
We check the option \( (5, 17, 8) \):
\( 5 = 2 + 3t \implies 3t = 3 \implies t = 1 \)
\( 17 = 8 + 9t \implies 9t = 9 \implies t = 1 \)
\( 8 = 4 + 4t \implies 4t = 4 \implies t = 1 \)
Since \( t = 1 \) satisfies all three coordinates, the point \( (5, 17, 8) \) lies on \( L_3 \).
Final Answer:
The final answer is \( \boxed{(5, 17, 8)} \).
Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: