To determine the value of \( \mu - 2\lambda \) for the given system of equations having infinitely many solutions, we need to ensure the system is consistent and dependent. Such a system results in at least one redundant equation. Below is how we approach the problem:
The correct answer is therefore 57.
Given the system of equations:
\[ 2x - y + z = 4 \tag{1} \] \[ 5x + \lambda y + 3z = 12 \tag{2} \] \[ 100x - 47y + \mu z = 212 \tag{3} \] We are asked to find \( \mu - 2\lambda \) given that the system has infinitely many solutions.
The system can be written in matrix form as: \[ \begin{pmatrix} 2 & -1 & 1 \\ 5 & \lambda & 3 \\ 100 & -47 & \mu \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 212 \end{pmatrix} \] For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero.
The determinant of the coefficient matrix is: \[ \text{det} = 2 \begin{vmatrix} \lambda & 3 \\ -47 & \mu \end{vmatrix} - (-1) \begin{vmatrix} 5 & 3 \\ 100 & \mu \end{vmatrix} + 1 \begin{vmatrix} 5 & \lambda \\ 100 & -47 \end{vmatrix} \] Calculating the 2x2 determinants and substituting into the determinant expression gives: \[ \text{det} = 2\lambda \mu + 5\mu - 100\lambda - 253. \]
For the system to have infinitely many solutions, we set the determinant to zero: \[ 2\lambda \mu + 5\mu - 100\lambda - 253 = 0. \]
Solving the equation, we find that: \[ \mu - 2\lambda = 57. \]
The value of \( \mu - 2\lambda \) is \( \boxed{57} \).
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
