Given the system of equations:
\[ 2x - y + z = 4 \tag{1} \] \[ 5x + \lambda y + 3z = 12 \tag{2} \] \[ 100x - 47y + \mu z = 212 \tag{3} \] We are asked to find \( \mu - 2\lambda \) given that the system has infinitely many solutions.
The system can be written in matrix form as: \[ \begin{pmatrix} 2 & -1 & 1 \\ 5 & \lambda & 3 \\ 100 & -47 & \mu \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 212 \end{pmatrix} \] For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero.
The determinant of the coefficient matrix is: \[ \text{det} = 2 \begin{vmatrix} \lambda & 3 \\ -47 & \mu \end{vmatrix} - (-1) \begin{vmatrix} 5 & 3 \\ 100 & \mu \end{vmatrix} + 1 \begin{vmatrix} 5 & \lambda \\ 100 & -47 \end{vmatrix} \] Calculating the 2x2 determinants and substituting into the determinant expression gives: \[ \text{det} = 2\lambda \mu + 5\mu - 100\lambda - 253. \]
For the system to have infinitely many solutions, we set the determinant to zero: \[ 2\lambda \mu + 5\mu - 100\lambda - 253 = 0. \]
Solving the equation, we find that: \[ \mu - 2\lambda = 57. \]
The value of \( \mu - 2\lambda \) is \( \boxed{57} \).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: