Step 1: Let \( Z = \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \).
Then we are looking for \( 16 \cdot \operatorname{Re}(Z) \cdot \operatorname{Im}(Z) \).
Step 2: Since \( \alpha + \beta = \frac{3}{2} \) and \( \alpha \beta = -i \), \( \beta = \frac{-i}{\alpha} \) and \( \alpha = \frac{3}{2} - \beta \) .
Then \( \alpha (\frac{3}{2}-\alpha) = -i \), thus \( \alpha^2 - \frac{3}{2} \alpha - i = 0 \).
Step 3: We have \( 2z^2 - 3z - 2i = 0 \). The roots are \[ z = \frac{3 \pm \sqrt{9 + 16i}}{4} \] Since \(9+16i = (4+i)^2 \), we get \[ z = \frac{3 \pm (4+i)}{4} \] So \( \alpha = \frac{7+i}{4} \) and \( \beta = \frac{-1+i}{4} \).
Step 4: \(Re(Z) \approx 5.25\) and \(Im(Z) \approx 5.25 \).
Then \( 16 \cdot Re(Z) Im(Z) \approx 16 \cdot 5.25^2 = 441 \).
Final Answer: The answer is 441.
\[ B = \left\{ x \geq 0 : \sqrt{x}(\sqrt{x - 4}) - 3\sqrt{x - 2} + 6 = 0 \right\}. \]
Then \( n(A \cup B) \) is equal to:
The steam volatile compounds among the following are: