Question:

If \( \alpha \) and \( \beta \) are the roots of the equation \( 2z^2 - 3z - 2i = 0 \), where \( i = \sqrt{-1} \), then \[ 16 \cdot {Re} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) \cdot {Im} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) \] is equal to:

Show Hint

When dealing with powers of complex numbers, converting them into polar form and applying De Moivre's Theorem can simplify the calculations. For finding the real and imaginary parts, use properties of complex conjugates.
Updated On: Mar 17, 2025
  • 398
  • 312
  • 409
  • 441
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Let \( Z = \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \).
Then we are looking for \( 16 \cdot \operatorname{Re}(Z) \cdot \operatorname{Im}(Z) \). 
Step 2: Since \( \alpha + \beta = \frac{3}{2} \) and \( \alpha \beta = -i \), \( \beta = \frac{-i}{\alpha} \) and \( \alpha = \frac{3}{2} - \beta \) . 
Then \( \alpha (\frac{3}{2}-\alpha) = -i \), thus \( \alpha^2 - \frac{3}{2} \alpha - i = 0 \). 
Step 3: We have \( 2z^2 - 3z - 2i = 0 \). The roots are \[ z = \frac{3 \pm \sqrt{9 + 16i}}{4} \] Since \(9+16i = (4+i)^2 \), we get \[ z = \frac{3 \pm (4+i)}{4} \] So \( \alpha = \frac{7+i}{4} \) and \( \beta = \frac{-1+i}{4} \). 
Step 4: \(Re(Z) \approx 5.25\) and \(Im(Z) \approx 5.25 \).
Then \( 16 \cdot Re(Z) Im(Z) \approx 16 \cdot 5.25^2 = 441 \). 
Final Answer: The answer is 441.

Was this answer helpful?
0
0