If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
For the system to have infinitely many solutions, the coefficient matrix must be singular, which means that the determinant of the coefficient matrix must be 0. We solve for \( \lambda \) and \( \mu \) by ensuring that the system is consistent and has infinitely many solutions.
Final Answer: \( \lambda + \mu = 11 \).
Let \( f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \). Then, \( \frac{df(x)}{dx} = \)
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to: