Step 1: Understand the condition \( X^T A X = 0 \). If \( X^T A X = 0 \) for all nonzero vectors \( X \), then \( A \) must be a skew-symmetric matrix. Therefore, \( A^T = -A \).
Step 2: Use the given information to find \( A \). Let \( v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) and \( v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \). We are given:
\[ A v_1 = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix} \quad \text{and} \quad A v_2 = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}. \] Also, let \( v_3 = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) be an arbitrary vector. Since \( A \) is skew-symmetric, the diagonal entries must be zero.
Let us compute \( A v_1 + A v_2 \):
\[ A v_1 + A v_2 = A(v_1 + v_2) = \begin{bmatrix} 1 \\ 8 \\ -13 \end{bmatrix}. \] Since we do not know enough about \( A \), let us proceed. The relation \( X^T A X = 0 \) for all \( X \) implies \( A \) is skew-symmetric. Let \( v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \), then: \[ A v_1 = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}, \quad A v_2 = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}. \] From \( A^T = -A \), we know \( a_{ii} = 0 \) for all \( i \). Let \( A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} \). Then: \[ A v_1 = \begin{bmatrix} a+b \\ -a+c \\ -b-c \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix} \] and \[ A v_2 = \begin{bmatrix} 2a+b \\ -a+2c \\ -2b-c \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}. \] So we have the following system of equations: \[ a + b = 1, \quad -a + c = 4, \quad -b - c = -5, \] \[ 2a + b = 0, \quad -a + 2c = 4, \quad -2b - c = -8. \] From \( a + b = 1 \) and \( 2a + b = 0 \), we get \( a = -1 \) and \( b = 2 \). From \( -a + c = 4 \), we get \( c = 3 \). Therefore, the matrix \( A \) is: \[ A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}. \]
Step 3: Calculate \( \det(2(A + I)) \)
We first compute \( A + I \), where \( I \) is the identity matrix: \[ A + I = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix}. \] Then: \[ 2(A + I) = \begin{bmatrix} 2 & -2 & 4 \\ 2 & 2 & 6 \\ -4 & -6 & 2 \end{bmatrix}. \] The determinant of \( 2(A + I) \) is calculated as: \[ \det(2(A + I)) = 2(4 + 36) + 2(4 + 24) + 4(-12 + 8) = 80 + 56 - 16 = 120. \]
Step 4: Calculate \( \det(\text{adj}(2(A + I))) \)
We know that: \[ \det(\text{adj}(M)) = (\det M)^{n-1}, \] where \( n \) is the size of the matrix. In our case, \( n = 3 \), so: \[ \det(\text{adj}(2(A + I))) = (\det(2(A + I)))^{3-1} = (120)^2 = 2^6 \cdot 3^2 \cdot 5^2. \]
Step 5: Find \( \alpha, \beta, \gamma \) and \( \alpha^2 + \beta^2 + \gamma^2 \)
We have: \[ \det(\text{adj}(2(A + I))) = 2^6 \cdot 3^2 \cdot 5^2, \] so \( \alpha = 6 \), \( \beta = 2 \), and \( \gamma = 2 \). Thus: \[ \alpha^2 + \beta^2 + \gamma^2 = 6^2 + 2^2 + 2^2 = 36 + 4 + 4 = 44. \]
The value of \( \alpha^2 + \beta^2 + \gamma^2 \) is \( \boxed{44} \).