Concept:
When an integral involves the greatest integer function \([x]\), the interval of integration must be split into subintervals where \([x]\) remains constant.
On each subinterval, the integrand becomes a constant function.
Step 1: Determine the values of \([x]\) on the interval
\[
\left[\frac{\pi}{2},\,\pi\right]
\]
Numerically,
\[
\frac{\pi}{2}\approx 1.57,\quad \pi\approx 3.14
\]
Hence:
For \(x\in\left[\frac{\pi}{2},2\right)\), \([x]=1\)
For \(x\in[2,3)\), \([x]=2\)
For \(x\in[3,\pi]\), \([x]=3\)
Step 2: Split the integral accordingly.
\[
\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x]+4}
=
\int_{\frac{\pi}{2}}^{2} \frac{dx}{1+4}
+\int_{2}^{3} \frac{dx}{2+4}
+\int_{3}^{\pi} \frac{dx}{3+4}
\]
Step 3: Evaluate each part.
\[
\int_{\frac{\pi}{2}}^{2} \frac{dx}{5}
= \frac{1}{5}\left(2-\frac{\pi}{2}\right)
\]
\[
\int_{2}^{3} \frac{dx}{6}
= \frac{1}{6}(1)
= \frac{1}{6}
\]
\[
\int_{3}^{\pi} \frac{dx}{7}
= \frac{1}{7}(\pi-3)
\]
Step 4: Add all results.
\[
\frac{1}{5}\left(2-\frac{\pi}{2}\right)
+ \frac{1}{6}
+ \frac{1}{7}(\pi-3)
\]
Simplifying,
\[
= \left(\frac{2}{5}-\frac{\pi}{10}\right)
+ \frac{1}{6}
+ \left(\frac{\pi}{7}-\frac{3}{7}\right)
\]
\[
= \left(\frac{\pi}{7}-\frac{\pi}{10}\right)
+ \left(\frac{2}{5}+\frac{1}{6}-\frac{3}{7}\right)
\]
\[
= \frac{7\pi}{20}+\frac{1}{60}
\]