Match the List-I with List-II.
Choose the correct answer from the options given below:
1. Triatomic rigid gas (A): For a rigid triatomic gas, the ratio \( \frac{C_P}{C_V} \) is \( \frac{5}{3} \) because there are no additional degrees of freedom for rotation or vibration. Thus, A matches with I.
2. Diatomic non-rigid gas (B): For a non-rigid diatomic gas, the ratio \( \frac{C_P}{C_V} \) is \( \frac{7}{5} \), so B matches with II.
3. Monoatomic gas (C): For a monoatomic gas, the ratio \( \frac{C_P}{C_V} \) is \( \frac{4}{3} \), corresponding to C matching with III.
4. Diatomic rigid gas (D): For a rigid diatomic gas, the ratio \( \frac{C_P}{C_V} \) is \( \frac{9}{7} \), matching with D matching with IV.
Final Answer $\text{A-III, B-IV, C-I, D-II}$.
Given the formula for the adiabatic index \(\gamma\): \[ \gamma = 1 + \frac{2}{f} \] Where \( f \) is the degrees of freedom: - For a triatomic rigid gas, \( f = 6 \): \[ \gamma = 1 + \frac{2}{6} = \frac{4}{3} \] - For a diatomic non-rigid gas, \( f = 7 \): \[ \gamma = 1 + \frac{2}{7} = \frac{9}{7} \] - For a diatomic rigid gas, \( f = 5 \): \[ \gamma = 1 + \frac{2}{5} = \frac{7}{5} \] - For a monoatomic rigid gas, \( f = 3 \): \[ \gamma = 1 + \frac{2}{3} = \frac{5}{3} \] \[ \boxed{\gamma = \frac{5}{3}} \]
An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ $ \times 10^{-1} $ J. (Take $ \pi = 3.14 $) 

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: