Concept: For inverse tangent functions, the identity \[ \tan^{-1}a+\tan^{-1}b=\tan^{-1}\!\left(\frac{a+b}{1-ab}\right) \] is valid when \(ab<1\), with the principal value lying in \((-\pi/2,\pi/2)\).
Step 1: Apply the identity. Let \[ a=4x,\quad b=6x \] Then, \[ \tan^{-1}(4x)+\tan^{-1}(6x) = \tan^{-1}\!\left(\frac{10x}{1-24x^2}\right) \] Given: \[ \tan^{-1}\!\left(\frac{10x}{1-24x^2}\right)=\frac{\pi}{6} \]
Step 2: Take tangent on both sides. \[ \frac{10x}{1-24x^2}=\tan\frac{\pi}{6}=\frac{1}{\sqrt{3}} \]
Step 3: Solve for \(x\). \[ 10\sqrt{3}\,x=1-24x^2 \] \[ 24x^2+10\sqrt{3}\,x-1=0 \] Solving: \[ x=\frac{-10\sqrt{3}\pm\sqrt{300+96}}{48} =\frac{-10\sqrt{3}\pm\sqrt{396}}{48} =\frac{-10\sqrt{3}\pm6\sqrt{11}}{48} \]
Step 4: Check interval restriction. Given interval: \[ x\in\left[-\frac{1}{2\sqrt{6}},\,\frac{1}{2\sqrt{6}}\right] \] On numerical evaluation:
One root lies within the given interval
The other root lies outside the given interval Hence, only one value of \(x\) satisfies both the equation and the interval condition.
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
