Question:

The number of values of \(x\) satisfying \[ \tan^{-1}(4x)+\tan^{-1}(6x)=\frac{\pi}{6}, \quad x\in\left[-\frac{1}{2\sqrt{6}},\,\frac{1}{2\sqrt{6}}\right] \] is

Show Hint

While solving inverse trigonometric equations:
Always check the validity condition of identities
After solving algebraically, \textbf{verify solutions with the given interval}
Updated On: Jan 22, 2026
  • \(1\)
  • \(0\)
  • \(2\)
  • \(3\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Concept: For inverse tangent functions, the identity \[ \tan^{-1}a+\tan^{-1}b=\tan^{-1}\!\left(\frac{a+b}{1-ab}\right) \] is valid when \(ab<1\), with the principal value lying in \((-\pi/2,\pi/2)\).
Step 1: Apply the identity. Let \[ a=4x,\quad b=6x \] Then, \[ \tan^{-1}(4x)+\tan^{-1}(6x) = \tan^{-1}\!\left(\frac{10x}{1-24x^2}\right) \] Given: \[ \tan^{-1}\!\left(\frac{10x}{1-24x^2}\right)=\frac{\pi}{6} \] 
Step 2: Take tangent on both sides. \[ \frac{10x}{1-24x^2}=\tan\frac{\pi}{6}=\frac{1}{\sqrt{3}} \] 
Step 3: Solve for \(x\). \[ 10\sqrt{3}\,x=1-24x^2 \] \[ 24x^2+10\sqrt{3}\,x-1=0 \] Solving: \[ x=\frac{-10\sqrt{3}\pm\sqrt{300+96}}{48} =\frac{-10\sqrt{3}\pm\sqrt{396}}{48} =\frac{-10\sqrt{3}\pm6\sqrt{11}}{48} \] 
Step 4: Check interval restriction. Given interval: \[ x\in\left[-\frac{1}{2\sqrt{6}},\,\frac{1}{2\sqrt{6}}\right] \] On numerical evaluation: 
One root lies within the given interval 
The other root lies outside the given interval Hence, only one value of \(x\) satisfies both the equation and the interval condition.

Was this answer helpful?
0
0