Given:
\[
\sum_{r=1}^{9} \left( \frac{r+3}{2^r} \right) \cdot {^9C_r} = \alpha \left( \frac{3}{2} \right)^9 - \beta,\quad \alpha, \beta \in \mathbb{N}
\]
We split the sum as:
\[
\sum_{r=1}^{9} \left( \frac{r+3}{2^r} \right) \cdot {^9C_r}
= \sum_{r=1}^{9} \left( \frac{r}{2^r} \cdot {^9C_r} \right) + \sum_{r=1}^{9} \left( \frac{3}{2^r} \cdot {^9C_r} \right)
\]
Now, use the identity:
\[
\frac{r}{2^r} \cdot {^9C_r} = \frac{9}{2^r} \cdot {^8C_{r-1}}
\]
So,
\[
\sum_{r=1}^{9} \frac{r}{2^r} \cdot {^9C_r} = 9 \sum_{r=1}^{9} \frac{1}{2^r} \cdot {^8C_{r-1}}
= \frac{9}{2} \sum_{r=1}^{9} {^8C_{r-1}} \cdot \left( \frac{1}{2} \right)^{r-1}
\]
Make the substitution \( s = r-1 \Rightarrow s = 0 \) to \( 8 \):
\[
= \frac{9}{2} \sum_{s=0}^{8} {^8C_s} \left( \frac{1}{2} \right)^s = \frac{9}{2} \cdot \left(1 + \frac{1}{2}\right)^8 = \frac{9}{2} \cdot \left( \frac{3}{2} \right)^8
\]
Now for the second term:
\[
\sum_{r=1}^{9} \frac{3}{2^r} \cdot {^9C_r} = 3 \left( \sum_{r=0}^{9} {^9C_r} \cdot \left( \frac{1}{2} \right)^r - {^9C_0} \cdot 1 \right)
= 3 \left( \left( 1 + \frac{1}{2} \right)^9 - 1 \right) = 3 \left( \left( \frac{3}{2} \right)^9 - 1 \right)
\]
Adding both parts:
\[
\frac{9}{2} \cdot \left( \frac{3}{2} \right)^8 + 3 \left( \left( \frac{3}{2} \right)^9 - 1 \right)
= \left( \frac{9}{2} \cdot \frac{2}{3} + 3 \right) \cdot \left( \frac{3}{2} \right)^9 - 3
= (3 + 3) \cdot \left( \frac{3}{2} \right)^9 - 3
= 6 \left( \frac{3}{2} \right)^9 - 3
\]
Thus, \( \alpha = 6 \), \( \beta = 3 \)
\[
\therefore (\alpha + \beta)^2 = (6 + 3)^2 = 81
\]