To solve the problem, let's start by analyzing the given condition:
\[\frac{| \vec{a} + \vec{b} | + | \vec{a} - \vec{b} |}{| \vec{a} + \vec{b} | - | \vec{a} - \vec{b} |} = \sqrt{2} + 1\]The vectors \(\vec{a}\) and \(\vec{b}\) have the same magnitude, so \(|\vec{a}| = |\vec{b}| = a\)\). Using the identity for the magnitudes:
\[|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}} = \sqrt{2a^2 + 2a^2\cos\theta}\]\[|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}} = \sqrt{2a^2 - 2a^2\cos\theta}\]Let us denote:
Then, applying the identity, we have:
\[x + y = \sqrt{2a^2(1 + \cos\theta)} + \sqrt{2a^2(1 - \cos\theta)} \] \] \] \] \] \] \[ x - y = \sqrt{2a^2(1 + \cos\theta)} - \sqrt{2a^2(1 - \cos\theta)} \] \] \] \] \]\]Now, consider the given condition again:
\[\frac{x + y}{x - y} = \sqrt{2} + 1 \] \] \] \] \] \] \[ \Rightarrow x + y = (\sqrt{2} + 1)(x - y) \] \] \] \] \]\]Substituting \(x = ka\)\)and \(y = ma\)\)in value where \(k\)\)and \(m\)\)are unknown constants, we solve for:
\[k + m = (\sqrt{2} + 1)(k - m) \] \] \] \] \] \] \[ \Rightarrow k + m = (\sqrt{2} + 1)(k - m) \] \] \] \] \]\]Cross-multiplying and simplifying, we arrive at \(\cos\theta = \frac{1}{\sqrt{2}}\). Consequently, \(|\vec{a} + \vec{b}|^2 = 2a^2 + 2a^2\frac{1}{\sqrt{2}}\)\) can be endeavored:
\[\Rightarrow |\vec{a} + \vec{b}|^2 = 2a^2 + \sqrt{2}a^2\]Thus,
\[\frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} = 2 + \sqrt{2}\]Hence, the given expression evaluates to: \(2 + \sqrt{2}\).