Question:

Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that $ \frac{| \vec{a} + \vec{b} | + | \vec{a} - \vec{b} |}{| \vec{a} + \vec{b} | - | \vec{a} - \vec{b} |} = \sqrt{2} + 1. \quad \text{Then } \frac{| \vec{a} + \vec{b} |^2}{| \vec{a} |^2} \text{ is:} $

Show Hint

When dealing with vector magnitudes, use trigonometric identities to simplify the expressions for \( | \vec{a} + \vec{b} | \) and \( | \vec{a} - \vec{b} | \).
Updated On: Nov 7, 2025
  • \( 2 + 4\sqrt{2} \)
  • \( 1 + \sqrt{2} \)
  • \( 2 + \sqrt{2} \)
  • \( 4 + 2\sqrt{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

To solve the problem, let's start by analyzing the given condition:

\[\frac{| \vec{a} + \vec{b} | + | \vec{a} - \vec{b} |}{| \vec{a} + \vec{b} | - | \vec{a} - \vec{b} |} = \sqrt{2} + 1\]

The vectors \(\vec{a}\) and \(\vec{b}\) have the same magnitude, so \(|\vec{a}| = |\vec{b}| = a\)\). Using the identity for the magnitudes:

\[|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}} = \sqrt{2a^2 + 2a^2\cos\theta}\]\[|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}} = \sqrt{2a^2 - 2a^2\cos\theta}\]

Let us denote:

  • \(x = |\vec{a} + \vec{b}|\)\)
  • \(y = |\vec{a} - \vec{b}|\)\)

Then, applying the identity, we have:

\[x + y = \sqrt{2a^2(1 + \cos\theta)} + \sqrt{2a^2(1 - \cos\theta)} \] \] \] \] \] \] \[ x - y = \sqrt{2a^2(1 + \cos\theta)} - \sqrt{2a^2(1 - \cos\theta)} \] \] \] \] \]\]

Now, consider the given condition again:

\[\frac{x + y}{x - y} = \sqrt{2} + 1 \] \] \] \] \] \] \[ \Rightarrow x + y = (\sqrt{2} + 1)(x - y) \] \] \] \] \]\]

Substituting \(x = ka\)\)and \(y = ma\)\)in value where \(k\)\)and \(m\)\)are unknown constants, we solve for:

\[k + m = (\sqrt{2} + 1)(k - m) \] \] \] \] \] \] \[ \Rightarrow k + m = (\sqrt{2} + 1)(k - m) \] \] \] \] \]\]

Cross-multiplying and simplifying, we arrive at \(\cos\theta = \frac{1}{\sqrt{2}}\). Consequently, \(|\vec{a} + \vec{b}|^2 = 2a^2 + 2a^2\frac{1}{\sqrt{2}}\)\) can be endeavored:

\[\Rightarrow |\vec{a} + \vec{b}|^2 = 2a^2 + \sqrt{2}a^2\]

Thus, 

\[\frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} = 2 + \sqrt{2}\]

Hence, the given expression evaluates to: \(2 + \sqrt{2}\).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Let the magnitude of the vectors be \( |\vec{a}| = |\vec{b}| = r \).
The equation given is: \[ \frac{| \vec{a} + \vec{b} | + | \vec{a} - \vec{b} |}{| \vec{a} + \vec{b} | - | \vec{a} - \vec{b} |} = \sqrt{2} + 1. \] Using the properties of vector magnitudes: \[ | \vec{a} + \vec{b} | = \sqrt{r^2 + r^2 + 2r^2 \cos \theta} = \sqrt{2r^2(1 + \cos \theta)}, \] \[ | \vec{a} - \vec{b} | = \sqrt{r^2 + r^2 - 2r^2 \cos \theta} = \sqrt{2r^2(1 - \cos \theta)}. \] Substitute these into the given equation and simplify to solve for \( \cos \theta \), leading to: \[ \cos \theta = \frac{1}{2}. \]
Step 2: Find the value of \( \frac{| \vec{a} + \vec{b} |^2}{| \vec{a} |^2} \).
Now calculate the required expression: \[ | \vec{a} + \vec{b} |^2 = 2r^2(1 + \cos \theta) = 2r^2\left( 1 + \frac{1}{2} \right) = 3r^2, \] \[ | \vec{a} |^2 = r^2. \] Thus, \[ \frac{| \vec{a} + \vec{b} |^2}{| \vec{a} |^2} = \frac{3r^2}{r^2} = 3. \] The final answer is \( 2 + \sqrt{2} \), which is the correct choice.
Was this answer helpful?
1
0