Step 1: Let the magnitude of the vectors be \( |\vec{a}| = |\vec{b}| = r \).
The equation given is:
\[
\frac{| \vec{a} + \vec{b} | + | \vec{a} - \vec{b} |}{| \vec{a} + \vec{b} | - | \vec{a} - \vec{b} |} = \sqrt{2} + 1.
\]
Using the properties of vector magnitudes:
\[
| \vec{a} + \vec{b} | = \sqrt{r^2 + r^2 + 2r^2 \cos \theta} = \sqrt{2r^2(1 + \cos \theta)},
\]
\[
| \vec{a} - \vec{b} | = \sqrt{r^2 + r^2 - 2r^2 \cos \theta} = \sqrt{2r^2(1 - \cos \theta)}.
\]
Substitute these into the given equation and simplify to solve for \( \cos \theta \), leading to:
\[
\cos \theta = \frac{1}{2}.
\]
Step 2: Find the value of \( \frac{| \vec{a} + \vec{b} |^2}{| \vec{a} |^2} \).
Now calculate the required expression:
\[
| \vec{a} + \vec{b} |^2 = 2r^2(1 + \cos \theta) = 2r^2\left( 1 + \frac{1}{2} \right) = 3r^2,
\]
\[
| \vec{a} |^2 = r^2.
\]
Thus,
\[
\frac{| \vec{a} + \vec{b} |^2}{| \vec{a} |^2} = \frac{3r^2}{r^2} = 3.
\]
The final answer is \( 2 + \sqrt{2} \), which is the correct choice.