To evaluate the expression \( (\sin 70^\circ)(\cot 10^\circ \cot 70^\circ - 1) \), we proceed with the following steps:
1. Simplifying the Cotangent Product:
We use the trigonometric identity for the product of cotangents:
\[ \cot A \cot B - 1 = \frac{\cos A \cos B}{\sin A \sin B} - 1 = \frac{\cos A \cos B - \sin A \sin B}{\sin A \sin B} = \frac{\cos(A+B)}{\sin A \sin B} \]
Applying this to our expression with \( A = 10^\circ \) and \( B = 70^\circ \):
\[ \cot 10^\circ \cot 70^\circ - 1 = \frac{\cos(10^\circ + 70^\circ)}{\sin 10^\circ \sin 70^\circ} = \frac{\cos 80^\circ}{\sin 10^\circ \sin 70^\circ} \]
2. Substituting Back into the Original Expression:
Now, multiply by \( \sin 70^\circ \):
\[ (\sin 70^\circ)\left( \frac{\cos 80^\circ}{\sin 10^\circ \sin 70^\circ} \right) = \frac{\cos 80^\circ}{\sin 10^\circ} \]
3. Using Complementary Angle Identity:
We know that \( \cos 80^\circ = \sin(90^\circ - 80^\circ) = \sin 10^\circ \):
\[ \frac{\cos 80^\circ}{\sin 10^\circ} = \frac{\sin 10^\circ}{\sin 10^\circ} = 1 \]
Final Answer:
The value of the expression is \(\boxed{1}\).
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 