If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Step 1: The given summation is:
\[ \sum_{r=1}^{15} r^2 \binom{15}{r} \Rightarrow 15 \sum_{r=1}^{15} r^{14} \binom{r-1}{1} \]
Step 2: Simplifying the summation:
\[ 15 \sum_{r=1}^{15} (r - 1 + 1)^{14} \binom{r-1}{1} \] which further simplifies to: \[ 15 \cdot 14 \sum_{r=1}^{15} \binom{r-2}{13} + 15 \cdot 14 \sum_{r=1}^{15} \binom{r-1}{14}. \]
Step 3: Calculating the terms:
\[ 15 \cdot 14 \cdot 2^{13} + 15 \cdot 14 \cdot 2^{14}. \]
Step 4: Final Simplification:
This can be simplified as: \[ 3^1 \cdot 2^{13} (70 + 10) = 3^1 \cdot 2^{13} \cdot 80. \]
Step 5: Final Calculation:
Further simplifying: \[ 3^1 \cdot 5^1 \cdot 2^{17}. \]
Step 6: Final Result:
\[ m = 17n = 1k = 1. \]
\(m+n+k = 17+1+1 = 19\)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]